Connect with us

Hi, what are you looking for?



New Hydrogen Fuel Catalyst Discovered

Hydrogen Fuel Cell

Hydrogen (H) fuel cell technology could perhaps become the cleanest form of energy, both in terms of generating the gas and in terms of combustion products (which are just heat and water). The biggest problem has been making the process of H generation clean, efficient, and cheap, as the current, main source of H gas is coal.

But H gas can also be derived more efficiently and ecologically from the splitting of water (H2O) molecules. But here too, there is one major obstacle: the controlled (non electrical power using) process of hydrolysis (water splitting) requires a catalyst to get the reaction going. Currently, the most efficient catalyst for this is the heavy metal element Platinum. Platinum works great, except that it is a rare metal, and very expensive to mine, thus making it impractical for mass industrial usage.

In addition, hydrolysis requires two separate catalytic steps–the first (the + anode) strips away electrons from the hydrogen atoms in the water and then combines the freed Oxygen (O) atoms into molecular oxygen (02). The second step (the – cathode) allows the positively charged H atoms to acquire electrons and thus pair up into molecular hydrogen (H2). The H2 gas is then combusted (via the O2) to power the vehicle, leaving only water (and some heat) as exhaust. To make this all work cost-effectively, cleanly, and without altering the ph level of the water (which would interfere with catalysis), finding a suitable catalytic agent or agents has been the over-riding concern with fuel cell engineers

Recently, researchers at the Massachusetts Institute of Technology (MIT) reported discovery of a new, water-splitting catalyst that is far more environmentally friendly than Platinum: it’s a composite of Cobalt and Phosphorus, which are relatively inexpensive and plentiful elements. This is a “giant leap” in hydrogen fuel technology and it has many energy scientists excited and cheering.

As with every major breakthrough, the technology needs much improvement. The catalyzing system works by taking an anode made of Indium Tin Oxide (ITO) and sinking it into a solution of cobalt ions (Co4+) and potassium phosphate (KP). But this system still requires an external jolt of energy to kick in the water-splitting reaction (this energy source does not come from the stored fuel energy and is not recovered in the process). Also, the catalyst can only deal with low levels of electrical current. But researchers are still optimistic about progress with this newest approach, especially since the new catalysts are so easy to make.

On other major engineering challenge is to connect the electrodes in the cell to solar panels (that supply the external jolt to the catalytic system) to provide a clean source of energy input. Further, it needs to be shown that the catalysts can work in seawater (which is high salt/alkaline). Seawater is a cheaper and more abundant water source, and if a workable system could be devised, such a system would be able to generate H, transport it to storage cells on shore, and convert it to electricity and (fresh) water. This goes beyond merely providing a fuel source for automobiles; it could satisfy two of civilization’s most basic needs–clean, plentiful energy and clean, drinking water.

Image credit: simple H Fuel Cell diagram courtesy of the IOWA Dept. of Natural Resources

Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

Don't want to miss a cleantech story? Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Written By

Michael Ricciardi is a well-published writer of science/nature/technology articles as well as essays, poetry and short fiction. Michael has interviewed dozen of scientists from many scientific fields, including Brain Greene, Paul Steinhardt, Arthur Shapiro, and Nobel Laureate Ilya Progogine (deceased). Michael was trained as a naturalist and taught ecology and natural science on Cape Cod, Mass. from 1986-1991. His first arts grant was for production of the environmental (video) documentary 'The Jones River - A Natural History', 1987-88 (Kingston, Mass.). Michael is an award winning, internationally screened video artist. Two of his more recent short videos; 'A Time of Water Bountiful' and 'My Name is HAM' (an "imagined memoir" about the first chimp in space), and several other short videos, can be viewed on his website ( He is also the author of the (Kindle) ebook: Artful Survival ~ Creative Options for Chaotic Times


You May Also Like


When it comes to electric vehicles and the Inflation Reduction Act of 2022, almost all of the discussion has been around the consumer tax...

Clean Transport

The shape of the longest railroad bridge in South Korea has inspired University of New South Wales engineers to design a new high-speed motor....


In July 2020, I interviewed the EV battery mineral experts at RK Equity for the first time. The core story was clear: there was...


DOE Seeks Public Input on Critical Materials Research Program to Strengthen Clean Energy Technology Manufacturing in America

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.