Connect with us

Hi, what are you looking for?


 
CleanTechnica

Clean Power

U.S. DOE Invests $33 Million to Advance Energy Research Across America

Funding Supports 14 Projects Ranging from Fusion to Quantum Computing in Parts of the Country That Get Disproportionally Low Amounts of Federal Research Dollars

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

WASHINGTON, D.C. — The U.S. Department of Energy (DOE) yesterday announced $33 million to support 14 clean-energy research projects as part of a program to ensure the Department’s research funding is reaching pockets of the country that traditionally have received disproportionally low amounts of Federal scientific funding. The projects will cover a range of topics — including grid integration, renewable solar and wind energy, and advanced manufacturing. Today’s funding will help ensure all regions of the country share in the ownership of priority research that advances science and addresses energy and environmental issues as the country moves ahead to reach the Biden–Harris Administration’s ambitious climate goals.

“America’s next big energy breakthrough can come from anywhere in the nation, and that’s why Federal R&D investments should reach and benefit all parts of the country,” said U.S. Secretary of Energy Jennifer M. Granholm. “The funding we’re announcing today will spur innovation and create energy jobs around the nation.”

This funding — provided through DOE’s Established Program to Stimulate Competitive Research (EPSCoR) program — is intended to improve geographic distribution of Federal research and development funds and strengthen research capabilities in underserved regions of the country. There are 28 jurisdictions designated under EPSCoR, including 25 states and three U.S. territories.

Projects selected in today’s announcement cover a range of energy research topics, from fundamental science topics to efforts in fusion energy, climate and ecosystem modeling, grid integration, wind energy, and sensors for energy conversion.

  • Boise State University (Boise, Idaho): Addresses understanding needed to design dye components that may be used for quantum computing.
  • Jackson State University (Jackson, Miss.): Discovering how interactions of thin layer materials with bulk materials can boost electronic and heat-conduction properties to improve energy efficiency in electronics.
  • University of Alaska Fairbanks (Fairbanks, Alaska): Working to modernize our power grid to fully accommodate renewable energy sources.
  • University of Kentucky (Lexington, Ky.): Understanding how materials selection and pattern geometry impact light-matter interactions in nanoscale magnets arrays.
  • University of Maine (Orono, Maine):  Preparing sensors to monitor and control energy conversion systems.
  • University of Nebraska–Lincoln (Lincoln, Neb.): Developing and applying new experimental and computational tools to understand dynamics of chemical reactions in organic materials.
  • University of Nebraska Omaha (Omaha, Neb.): Developing new magnetic and superconducting materials for potential applications in energy storage and conversion, data storage, and medical imaging.
  • University of Nevada, Reno (Reno, Nev.): Developing understanding to build stable controllable spin systems for quantum information sciences and quantum computing.
  • University of New Hampshire (Durham, N.H.): Developing models for marine atmosphere boundary layers to address atmospheric turbulence and impact on wind turbine performance.
  • University of New Mexico (Albuquerque, N.M.): Understanding the impacts of changing headwater stream networks on surface water quality, habitats and ecosystem response.
  • University of Rhode Island (Kingston, R.I.): Building and testing response systems to protect floating wind turbines and maximize power production during difficult weather conditions.
  • University of Southern Mississippi (Hattiesburg, Miss.): Developing a high‐throughput approach for the development of polymeric membranes, leveraging machine learning, autonomous synthesis, and neutron and synchrotron characterization.
  • University of Wyoming (Laramie, Wyo.): Addressing and reducing uncertainty across scales in global climate change models.
  • West Virginia University Research Corp. (Morgantown, W.V.): Characterizing ionized gases or plasmas whose applications range from understanding solar flares, to advanced rocket propulsion, to building fusion power systems.

Projects were chosen based on competitive peer review under a DOE Funding Opportunity Announcement for EPSCoR Implementation Grants. The DOE EPSCoR program is managed by the Department’s Office of Science through its Office of Basic Energy Sciences (BES). Projects announced today are selections for negotiation of financial award.

Planned funding will total approximately $33 million in Fiscal Year 2023 dollars for two-year projects. A list of projects can be found on the BES homepage.

News from U.S. DOE.

 
Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

EV Obsession Daily!


I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
 
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
 
Thank you!

Tesla Sales in 2023, 2024, and 2030


Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

The mission of the U.S. Energy Department is to ensure America’s security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions. Learn more.

Comments

You May Also Like

Clean Power

Near-Commercial Wind Turbine Innovations Will Allow for Cost-Effective Wind Power in Additional Regions of the United States

Clean Power

Interior and Energy Departments Release Comprehensive Transmission Action Plan to Unlock America’s Vast Potential of Atlantic Offshore Wind Energy

Clean Power

This new offshore floating wind turbine will conquer the Gulf of Maine, if all goes according to plan.

Clean Power

US Energy Department deploys a high tech renewable energy "sandbox" to help local communities de-risk and accelerate their decarbonization plans.

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.