Connect with us

Hi, what are you looking for?

CleanTechnica
A data visualization showing two Ford self-driving research vehicles driving. Credit: Ford Motor Company.

Autonomous Vehicles

Location Key to Improved Autonomous Vehicle Vision

QUT robotics researchers working with Ford Motor Company have found a way to tell an autonomous vehicle which cameras to use when navigating.

Professor Michael Milford, Joint Director of the QUT Centre for Robotics and Australian Research Council Laureate Fellow and senior author, said the research comes from a project looking at how cameras and LIDAR sensors, commonly used in autonomous vehicles, can better understand the world around them.

“The key idea here is to learn which cameras to use at different locations in the world, based on previous experience at that location,” Professor Milford said.

“For example, the system might learn that a particular camera is very useful for tracking the position of the vehicle on a particular stretch of road, and choose to use that camera on subsequent visits to that section of road.”

Dr. Punarjay (Jay) Chakravarty is leading the project on behalf of the Ford Autonomous Vehicle Future Tech group.

A data visualization showing two Ford self-driving research vehicles driving. Credit: Ford Motor Company.

“Autonomous vehicles depend heavily on knowing where they are in the world, using a range of sensors including cameras,” says Dr Chakravarty.

“Knowing where you are helps you leverage map information that is also useful for detecting other dynamic objects in the scene. A particular intersection might have people crossing in a certain way.

“This can be used as prior information for the neural nets doing object detection and so accurate localization is critical and this research allows us to focus on the best camera at any given time.

“To make progress on the problem, the team has also had to devise new ways of evaluating the performance of an autonomous vehicle positioning system.”

Joint lead researcher Dr Stephen Hausler said: “We’re focusing not just on how the system performs when it’s doing well, but what happens in the worst-case scenario.”

This research took place as part of a larger fundamental research project with Ford looking at how cameras and LIDAR sensors, commonly used in autonomous vehicles, can better understand the world around them.

This work has just been published in the journal IEEE Robotics and Automation Letters, and will also be presented at the upcoming IEEE/RSJ International Conference on Intelligent Robots and Systems in Kyoto, Japan in October.

QUT researchers Stephen Hausler, Ming Xu, Sourav Garg and Michael Milford collaborated with Ford’s Punarjay Chakravarty, Shubham Shrivastava and Ankit Vora.

Article courtesy of Queensland University of Technology (QUT).

 
Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 

Don't want to miss a cleantech story? Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Advertisement
 
Written By

We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people, organizations, agencies, and companies.

Comments

You May Also Like

Batteries

As part of the Ford+ plan for growth and value-creation, Ford Motor Company is investing $700 million in new investment and creating 500 additional...

Clean Transport

While EV enthusiasts in Australia and New Zealand might be holding out for a Rivian or a Ford F-150 Lightning, they may have to...

Clean Power

Once upon a time, it was a common assumption in the utility industry and among solar skeptics that solar power couldn’t provide more than...

Clean Transport

At present, Ford’s E-Transit offered in the United States comes with a limited range of only 126 miles. That’s actually enough for most businesses...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.