Connect with us

Hi, what are you looking for?

Recycling Lead-Acid Batteries is Easy. Why Is Recycling Lithium-ion Batteries Hard?


Recycling Lead-Acid Batteries Is Easy. Why Is Recycling Lithium-ion Batteries Hard?

By James Morton Turner, an environmental studies professor at Wellesley College and author of the forthcoming book “Charged: A History of Batteries and Lessons for a Clean Energy Future.” He published the lead op-ed in the journal Science’s special climate change issue last month (June 24, 2022).

The lithium-ion batteries in today’s electric vehicles outperform older lead-acid batteries by almost every measure, except one.  Lead-acid batteries are still the single-most recycled product in the world.

Although lithium-ion batteries are set to power a clean-energy transition, more than 100 million lead-acid batteries are still sold each year in the United States, mostly as starter batteries for cars, trucks, and boats.

When those lead-acid batteries die, nearly all of them get recycled. In fact, the lead-acid battery industry claims a domestic recycling rate of 99 percent. In 2021, the U.S. produced nearly one million metric tons of recycled lead. Almost all of that recycled lead was used to manufacture new batteries.

What is interesting is that none of this is actually new. Lead-acid batteries have been recycled since the 1920s. As early as 1930, the industry described lead for batteries as a “loan” rather than a form of “consumption.” Prior to the 1960s, hundreds of small-scale lead recycling operations operated in and around U.S. cities, making this an early form of urban mining.

These urban lead recycling operations were also a significant source of pollution. One of the earliest epidemics of lead poisoning was tied to battery recycling operations in Baltimore, Maryland, in the 1930s. In some places, it is still possible to identify the sites of abandoned lead-acid battery recycling operations based on elevated levels of heavy metals in the soil.

In the 1980s, however, the industry went through a major restructuring. New environmental laws forced recyclers to upgrade pollution controls. In response, many small recyclers closed. Those that remained consolidated operations into integrated battery recycling operations with improved pollution controls. Today, a dozen highly regulated secondary lead smelters recycle the vast majority of the U.S.’s spent lead-acid batteries.

With global production of lithium-ion batteries now overtaking lead-acid batteries, it is worth asking why lead-acid batteries have been recycled for so long and so efficiently, and what lessons that offers for closing the loop on the lithium-ion batteries.  Consider these three points:

First, the chemistry and format of lead-acid batteries is highly standardized, which simplifies recycling. Unlike with lithium-ion batteries, which come in a range of chemistries and a variety of shapes (cylindrical, flat, pouch, etc.), the relative uniformity of spent lead-acid batteries reduces the need for sorting spent lead-acid batteries by chemistry, shape, or size. That facilitates bulk processing.

Second, the metals content of lead-acid batteries is almost entirely metallic lead and lead oxide paste — both of which are usually recovered through pyrometallurgical recycling processes at more than 2000 degrees Fahrenheit. After processing, the recovered lead is both the functional equivalent of and cost-competitive with lead sourced from primary ore.

In comparison, lithium-ion batteries are far more materially complex. That requires tailoring lithium-ion recycling processes to recover a range of cathode materials (lithium, cobalt, nickel, manganese, iron, etc.), anode materials (graphite), and conductors (aluminum and copper). These complexities pose significant challenges for efficiently recovering materials and processing them for re-use cost-effectively.

Third, starting in the 1980s, the federal government and states prohibited the disposal of lead-acid batteries, due to lead’s high toxicity. Although some spent lead-acid batteries get shipped abroad for recycling, most are recycled domestically. (Concerns have been raised about spent battery shipments to less well-regulated facilities in Mexico.) That has meant recycling has played an important role in ensuring the United States has had an abundant and reliable source of domestic lead.

Looking ahead, the scale of recycling of lithium-ion batteries is set to expand rapidly. High volumes of spent large-format electric car batteries promise to drive the economies of scale needed to close the loop on lithium-ion batteries. Studies indicate that recycling has the potential to reduce the cumulative demand for lithium, cobalt, and nickel needed to electrify the transportation sector by up to 30 percent between 2020 and 2050.

Scaling up lithium-ion battery recycling will also create opportunities to improve the sustainability of recycling operations. Existing pyrometallurgical processes for lithium-ion batteries often recover only a fraction of the metals content of spent batteries (usually driven by the value of cobalt). Direct recycling strategies, such as those being researched at Argonne National Laboratory’s ReCell Center, have the potential to substantially improve materials recovery and to reduce the energy inputs and potential pollutants from lithium-ion battery recycling.

Although there are growing private-sector and governmental initiatives to promote recycling in the United States, the flow of spent lithium-ion batteries, and the resources they contain, could easily be diverted overseas. In the long term, a robust U.S. lithium-ion recycling industry can play an important role in securing domestic sources of advanced battery materials. Although its significance is little appreciated, that is just the role the lead recycling industry has played in supporting domestic manufacture of lead-acid batteries since the mid-twentieth century.  

This post is adapted from James Morton Turner’s forthcoming book, Charged: A History of Batteries and Lessons for a Clean Energy Future (August 2022). You can learn more about Charged at Turner tweets at @_jay_turner

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Former Tesla Battery Expert Leading Lyten Into New Lithium-Sulfur Battery Era — Podcast:

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Written By

We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people, organizations, agencies, and companies.


You May Also Like


In another recent article, I explored how Ford is taking the Tesla approach to EVs, not only with its recently announced adoption of Tesla’s...

Clean Transport

Tesla recently held a groundbreaking ceremony for its new lithium refinery in Texas, during which CEO Elon Musk rolled up in a fully-outfitted Cybertruck....

Clean Power

The U.S. Geological Survey will invest more than $5.8 million to map critical-mineral resources in Alaska in partnership with the Alaska Division of Geological...


The Indian government is expected to initiate auction of mining rights for lithium reserves later this year. According to media reports, the Indian government...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.