Connect with us

Hi, what are you looking for?


 
CleanTechnica
Samsung SDI EV batteries at SPI
Samsung SDI batteries. Image by Kyle Field, CleanTechnica.

Batteries

Scientists Use Multivalent Cation Additives to Rid Rechargeable Batteries of a Common Pitfall

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Researchers at Tohoku University have unearthed a means to stabilize lithium or sodium depositions in rechargeable batteries, helping keep their metallic structure intact. The discovery prevents potential battery degradation and short circuiting, and paves the way for higher energy-density metal-anode batteries.

Courtesy of Tohoku University

Scientists are ever-seeking to develop safer, higher-capacity, and faster-charging rechargeable batteries to meet our energy needs sustainably. Metal anodes show the highest promise to achieve that goal. Yet the use of alkali metals poses several problems.

In a rechargeable battery, ions pass from the cathode to the anode when charging, and in the opposite direction when generating power. Repeated deposition and dissolution of metal deforms the structures of lithium and sodium. Additionally, fluctuations in diffusion and electric fields in the electrolytes close to the electrode surface leads to the formation of needle-like microstructures called dendrites. The dendrites are weakly bonded and peel away from the electrodes, resulting in short circuiting and decreases in cycle capacity.

To solve this problem, a research team led by Hongyi Li and Tetsu Ichitsubo from Tohoku University’s Institute for Materials Research added multivalent cations, such as calcium ions, that altered and strengthened the solvation structure of lithium or sodium ions in the electrolyte.

“Our modified structure moderates the reduction of lithium or sodium ions on the electrode surface and enables a stable diffusion and electric field,” said Dr Li. The stabilized ions, in turn, preserve the structure of the electrodeposited metals.

Details of their research were published in the journal Cell Reports Physical Science on May 20, 2022.

For their next steps, Li and Ichitsubo are hoping to improve the metal anodes’ interfacial design to further enhance the cycle life and power density of the batteries.

Publication Details:
Title: Dendrite-free alkali metal electrodeposition from contact-ion-pair state induced by mixing alkaline earth cation
Authors: Hongyi Li, Masaki Murayama, Tetsu Ichitsubo
Journal: Cell Reports Physical Science
DOI: https://doi.org/10.1016/j.xcrp.2022.10090
 
Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

EV Obsession Daily!


I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
 
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
 
Thank you!

Tesla Sales in 2023, 2024, and 2030


Advertisement
 
CleanTechnica uses affiliate links. See our policy here.
Written By

We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people, organizations, agencies, and companies.

Comments

You May Also Like

Clean Transport

We live in a time in which it's clear that transportation electrification is absolutely necessary if we are to mitigate the effects of climate...

Batteries

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News! There are still many people in the automotive...

Batteries

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News! A vital component of the batteries at the...

Batteries

A team of geologists say they may have found the largest lithium deposit in the world inside an extinct volcano in Nevada.

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.