Connect with us

Hi, what are you looking for?

CleanTechnica
Utility-scale batteries. Image courtesy of Tesla.

Batteries

Duration Of Utility-Scale Batteries Depends On How They’re Used

At the end of 2021, the United States had 4,605 megawatts (MW) of operational utility-scale battery storage power capacity, according to our latest Preliminary Monthly Electric Generator Inventory. Power capacity refers to the greatest amount of energy a battery can discharge in a given moment. Batteries used for grid services have relatively short average durations. A battery’s average duration is the amount of time a battery can contribute electricity at its nameplate power capacity until it runs out. Batteries used for electricity load shifting have relatively long durations.

 

Source: U.S. Energy Information Administration, Annual Electric Generator Report.

 

We calculate a battery’s duration by using the ratio of energy capacity (measured in megawatt-hours [MWh]) to power capacity (in MW). Energy capacity refers to the total amount of energy these batteries can store. Our energy capacity data come from our most recent Annual Electric Generator Report, which contains data through the end of 2020. When fully charged, battery units built through 2020 could produce their rated nameplate power capacity for about 3.0 hours on average before recharging.

Our Annual Electric Generator Report also contains information on how energy storage is used by utilities. Utility-scale battery storage can be used primarily in two ways: serving grid applications and allowing electricity load shifting. Our Battery Storage in the United States: An Update on Market Trends report contains a full description and breakdown of all of the grid service and electricity load shifting applications reported to us.

Battery operators report that more than 40% of the battery storage energy capacity operated in the United States in 2020 could perform both grid services and electricity load shifting applications. About 40% performed only electricity load shifting, and about 20% performed only grid services.

Batteries with a duration of less than two hours are considered short-duration batteries, and almost all can provide grid services that help maintain grid stability. Batteries providing grid services discharge power for short periods of time, sometimes even for only seconds or minutes, which is why it can be economical to deploy short-duration batteries. Most battery capacity installed in the late 2010s was made up of short-duration batteries used for grid services, but that trend has changed over time.

Batteries with a duration between four hours and eight hours are typically cycled once per day and are used to shift electricity from times of relatively low demand to times of high demand. In a region with relatively high solar power capacity, daily-cycling batteries can store solar electricity midday and discharge that electricity during peak electricity consumption hours in the evening when solar power is declining.

According to planned installations compiled in our Preliminary Monthly Electric Generator Inventory, we expect battery storage to increase by 10 gigawatts (GW) by the end of 2023. More than 60% of this battery capacity is intended to be paired with solar power plants. As of 2020, most installed co-located battery storage at solar facilities work to shift electricity loads and have average durations of four hours or more.

First published on “Today In Energy.” Principal contributor: Vikram Linga

Related story: Utility-Scale Batteries & Pumped Storage Return About 80% Of The Electricity They Store

 
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Former Tesla Battery Expert Leading Lyten Into New Lithium-Sulfur Battery Era — Podcast:



I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Advertisement
 

-- the EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding of energy and its interaction with the economy and the environment.

Comments

You May Also Like

Aviation

Electrification of US trucking is an amazing strategic advantage, but you'd never know it listening to the American Trucking Association.

Clean Power

BLUETTI is now actively responding to the call of Earth Day 2023

Batteries

Easter 2023 is coming up quickly and BLUETTI Easter campaign is in full swing as of April 6, 2023, with plenty of stand-out savings from...

Cars

By Robert Crew, SME Manufacturing and Mobility @ Hitachi

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.