Connect with us

Hi, what are you looking for?

CleanTechnica
Solid State Battery
Solid state cathode image courtesy of MIT.

Batteries

New, New Solid-State Battery News From MIT

We all know — or think we know — that a solid-state battery is better than a battery with a liquid or semi-liquid electrolytes. A solid-state battery has a lower risk of thermal runaway (what ordinary people call fires). It also has a higher energy density, can charge and discharge more rapidly, performs better in cold temperatures, and lasts longer. So why isn’t everyone using them to power their battery electric vehicles?

The answer is, nobody knows how to manufacture them outside of the laboratory — yet — but scientists are getting closer all the time. According to MIT, one of the main stumbling blocks to making a solid-state battery is that instabilities in the boundary between the solid electrolyte layer and the two electrodes on either side can dramatically shorten its life. Adding special coatings to improve the bonding between the layers solves some of the problems but adds to the expense of manufacturing.

A team of researchers at MIT and Brookhaven National Laboratory has come up with a way of achieving results that equal or surpass the durability of coated surfaces without the need for coatings. The key is to eliminate any trace of carbon dioxide during a critical step in the manufacturing process known as sintering.

In that process, the solid-state battery materials made of ceramic compounds are heated to create a bond between the cathode and electrolyte. Doing so in the presence of pure oxygen creates bonds that match the performance of the best coated surfaces without that extra cost of the coating. The results of the research were published recently in the journal Advanced Energy Materials.

“Solid-state batteries have been desirable for different reasons for a long time,” says researcher Bilge Yildiz. “The key motivating points for solid batteries are they are safer and have higher energy density,” but she says they have been held back from large scale commercialization by two factors — the lower conductivity of the solid electrolyte and the interface instability issues.

The conductivity dilemma has been effectively tackled and reasonably high-conductivity materials have already been demonstrated, according to Yildiz. But overcoming the instabilities that arise at the interface has been far more challenging. These instabilities can occur during both the manufacturing and the electrochemical operation of such batteries, but for now the researchers have focused on the manufacturing, and specifically the sintering process.

A Solid-State Battery & Sintering

Sintering is needed because if the ceramic layers are simply pressed onto each other, the contact between them is far from ideal. There are too many gaps and the electrical resistance across the interface is high. Sintering causes atoms from each material to migrate into the other to form bonds.

The team’s experiments showed that at temperatures anywhere above a few hundred degrees, detrimental reactions take place that increase the resistance at the interface if carbon dioxide is present, even in tiny amounts. They demonstrated that avoiding carbon dioxide, and in particular maintaining a pure oxygen atmosphere during sintering, could create very good bonding at temperatures up to 700 degrees, with none of the detrimental compounds formed.

The performance of the cathode-electrolyte interface made using this method was “comparable to the best interface resistances we have seen in the literature,” but those were all achieved using the extra step of applying coatings. “We are finding that you can avoid that additional fabrication step, which is typically expensive,” Yildiz said.

What’s Next?

The research team is now studying how these bonds hold up over the long run during battery cycling. Meanwhile, the new findings could potentially be applied rapidly to solid-state battery production, Yildiz says. “What we are proposing is a relatively simple process in the fabrication of the cells. It doesn’t add much energy penalty to the fabrication. So, we believe that it can be adopted relatively easily into the fabrication process.” The added costs are negligible, the team believes

The research was supported by the U.S. Army Research Office through the MIT Institute for Soldier Nanotechnologies [your tax dollars at work]. The team used facilities supported by the National Science Foundation and facilities at Brookhaven National Laboratory supported by the Department of Energy.

 
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Former Tesla Battery Expert Leading Lyten Into New Lithium-Sulfur Battery Era — Podcast:



I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Advertisement
 
Written By

Steve writes about the interface between technology and sustainability from his home in Florida or anywhere else The Force may lead him. He is proud to be "woke" and doesn't really give a damn why the glass broke. He believes passionately in what Socrates said 3000 years ago: "The secret to change is to focus all of your energy not on fighting the old but on building the new."

Comments

You May Also Like

Batteries

Tesla stands to qualify for $1.8 billion in the federal production credits that are part of the Inflation Reduction Act this year.

Buildings

Stratas without charging have units that sell for a bit less than stratas that have it

Aviation

OEMs that try to roll bespoke engineered solutions, niche chemistries, or custom designed battery assemblies are making the wrong strategic decisions.

Batteries

Earlier this month, Tesla battery cell supplier Panasonic announced that it would delay the commercial production schedule of 4680 cells. Some wonder if the...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.