Transportation Modeling Tool Informs Intelligent Planning & Control for Mobility-Service-Provider Fleets

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

The transportation industry is on the cusp of rapid evolution, with vehicle electrification, automation, and ride sharing transforming the age-old paradigm of privately owned and operated gasoline vehicles.

“When evaluated separately, these emerging trends offer great opportunities as well as potential obstacles,” said Matthew Moniot, an advanced vehicle simulation and data analysis engineer at the National Renewable Energy Laboratory (NREL). “Here at the laboratory, we are working to steer these trends toward sustainability, with a focus on energy efficiency, affordability, equity, and environmental benefits.”

Developing the Right Tool for the Job

The complexities of vehicle electrification, automation, and ride sharing motivated researchers to develop the Highly Integrated Vehicle Ecosystem (HIVE), a transportation modeling tool that simulates the operations of mobility-service-provider fleets, including those that employ shared autonomous electric vehicles (SAEV). HIVE mixes agent-based modeling and centralized dispatch for automated and human-driven fleets and ride-hail passengers.

“HIVE supports rapid, end-to-end research into intelligent fleet planning and control to inform fleet, battery, and infrastructure investment decisions, as well as efficient charge management and vehicle dispatching strategies,” Moniot said. “Such strategies can curb potential side effects associated with minimal ride pooling, an insufficient charging infrastructure, and zero-passenger miles.”

HIVE’s flexible design enables researchers to build large-scale simulations and compare outcomes across scenarios that vary with respect to locations and operating areas, vehicle types and fleet makeup, charging and fueling station networks, fleet operational behaviors and dispatching algorithms, economic factors and relevant policy considerations, and customer behavior, such as the willingness to pool or delay travel.

Case Study Highlights HIVE’s Capabilities

Researchers tapped demand data from the New York City Taxi and Limousine Commission to demonstrate HIVE’s unique capabilities and flexibility in modeling ride-hailing fleets. This study, detailed in the NREL report “HIVE: A Platform for Managing the Operations of On-Demand Vehicle Fleets,” captures the trade-offs between input variables of interest—in this case, fleet size, load profiles, and quality of service.

Transportation Modeling. Sample vehicle trajectory and state-of-charge during 24-hour simulation.

HIVE’s flexible reporting offers results at the vehicle and fleet levels. Figure 1 provides an overview of sample information available for each vehicle during the simulation. The vehicle trajectory incorporates a variety of driving states, including commuting, repositioning, dispatching to trips, performing trips, and dispatching to charge. During each driving event, road link speeds determine vehicle travel times. Although links in Manhattan are generally low speed, the vehicle accumulates significant mileage throughout the day — over 150 miles — requiring a fast charge at a station in midtown Manhattan before continuing to service trips throughout the remainder of its shift.

Findings emphasize increased charging demand and the importance of fleet sizing necessary to support Manhattan taxi services. Shift start times and request dynamics heavily influence charging times and locations throughout the city. As a result, charging loads across stations are highly variable throughout the day, with no charging during overnight hours. Ride-hailing fleets must employ enough vehicles to manage customer demand alongside charging needs to accommodate passengers.

“HIVE’s functionality extends well beyond the considerations of this case study,” Moniot said. “Additional opportunities for inquiry are vast, including exploring the trade-offs between vehicle battery investment and charging infrastructure investment, autonomous fleet operation versus human-driven fleets, and more.”

Learn more about NREL’s sustainable transportation and mobility research.

Article courtesy of National Renewable Energy Laboratory.

Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

CleanTechnica Holiday Wish Book

Holiday Wish Book Cover

Click to download.

Our Latest EVObsession Video

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
Thank you!

CleanTechnica uses affiliate links. See our policy here.

US Department of Energy

The mission of the U.S. Energy Department is to ensure America’s security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions. Learn more.

US Department of Energy has 735 posts and counting. See all posts by US Department of Energy