Connect with us

Hi, what are you looking for?

Instruments shown here conduct a high-resolution measurement campaign at the Nevada Solar One facility. Photo courtesy of Shashank Yellapantula, NREL

Clean Power

Understanding the Impact of Wind Conditions on Concentrating Solar Power Structures

NREL Embarks on Two-Year, SETO-Funded Computational Modeling Project

High wind loads increase structural design costs of concentrating solar power (CSP) collector structures, such as heliostats and parabolic troughs. In a new two-year project, the National Renewable Energy Laboratory (NREL) will work with the Department of Energy Office of Energy Efficiency and Renewable Energy’s Solar Energy Technologies Office (SETO) to conduct two comprehensive at-scale field measurements of atmospheric turbulent wind conditions and the resulting wind loads on CSP structures. The data sets will be used to develop and validate computational models that will be made publicly available to the CSP community.

Previous studies have relied on data from wind tunnels that do not adequately capture the dynamic effects observed at scale. In recent projects over the past two years, NREL has leveraged more than two decades of wind-energy modeling expertise to conduct at-scale field measurements to characterize the turbulent wind conditions at the Nevada Solar One parabolic trough CSP facility located near Las Vegas. The high-resolution measurements to be collected through the new project will be used to further validate the high-fidelity computational models that have been developed at NREL.

A met mast characterizes wind wakes surrounding parabolic troughs. Photo courtesy of Shashank Yellapantula, NREL

“The team is composed of members from all over the lab who are working seamlessly to make sure this important project is successful and provides critical information to the CSP plant developers and operators,” said Shashank Yellapantula, a research engineer in NREL’s Computational Science Center.

Yellapantula has been a part of two previously funded SETO projects as well as this recently launched two-year effort. He has developed and validated wind-loading simulation models for parabolic troughs that have resulted in peer-reviewed publications. He will be responsible for development of computationally efficient models that can be transitioned to industry at the end of this project.

“I look forward to working with my colleagues from the Computational Science and National Wind Technology centers,” said Mark Mehos, NREL’s Thermal Energy Systems group manager within the Center for Energy Conversion & Storage Systems. “Significant funding from the Wind Energy Technologies Office has led to the development of high-fidelity computational fluid-dynamic models and instruments for on-site wind assessment. Leveraging these dollars to support the CSP community benefits all involved and should be a model for future collaboration.”

In addition to the NREL team, there are several industry partners and stakeholders that will serve as advisors to ensure that the project remains relevant to the industry. These partners include Schlaich Bergermann Partner (SBP), Solar Dynamics, Acciona Energy, and the Australian Solar Thermal Research Institute (ASTRI). The NREL team and Acciona engineers are currently coordinating the wind measurement campaign at Acciona’s Nevada Solar One facility.

For basics on concentrating solar-thermal power or for more on NREL’s CSP work, visit

Article courtesy of National Renewable Energy Laboratory.

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

The mission of the U.S. Energy Department is to ensure America’s security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions. Learn more.


You May Also Like

Clean Power

As is the case across many historically male-dominated fields, women are underrepresented in leadership and technical roles at power system operation organizations. This disparity...

Clean Power

Researchers Are Collecting the Most Comprehensive Data on How Winds Move Through Wind Power Plants To Help Design More Efficient Plants and Reduce Wind...


The REopt® web tool is a techno-economic decision support platform used by researchers to optimize energy systems for buildings, campuses, communities, microgrids, and more. Users enter site-specific...

Clean Power

NREL Experts Are Advancing Marine Energy and Hydropower To Help Build a 100% Clean Energy Future Over the last year, National Renewable Energy Laboratory...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.