Demystifying Neural Networks: Teslas Are (Probably) Not Alive, But That’s OK! (Part 4)

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

The Man Behind The Neural Network Curtains: Yep, It’s Still Computer Programs

Again, this is going to be a simplification, but it will be an instructive one nonetheless.

An artificial neural network is a series of math operations (more specifically, statistics), but the math in each little “cell” in the neural network isn’t manually set by humans the way most programs are. Instead, the main concern is getting the network to give you the proper outputs for a given set of inputs.

You “train” and “evolve” these networks by giving them sample data. Here’s some sample data, little fake brain. Shape yourself internally with weights and connections so that you provide outputs that match the sample outputs for this data. Some of you won’t make it, but it’s a chance that I’m willing to take because you’re just programs and can’t really die during training and evolution.

Image by glosser.ca, CC-BY-SA 3.0

Then, once the training is complete, let’s test the survivors and see who does the best job on a different data set (not the training data). If the training went well, it should be able to come up with things that we didn’t give it the answer to, and that will prove that it actually “learned” something.

I don’t mean to piss in the Wheaties of the hardworking people making better and better artificial neural networks, because they really are enabling computers to do really cool things using these methods. It’s perfectly OK to appreciate these methods for what they really are. They really are awesome!

You can show a trained artificial neural network a picture, and it can tell you useful things about the image if you’ve trained it to do so before. This is a curb. This is a stop sign. This is a child. Ideally, we don’t let cars drive through any of these things because that would be very bad. Put a few of these networks together and have them run as part of a program (infinitely easier said than done), and you can start imitating human tasks like driving, recognizing a face, approving/denying loans, and even making initial hiring decisions. Awesome!

But, don’t forget that the self-organizing nature of these networks and their complexity doesn’t make them more than a computer program. They don’t feel. They don’t have opinions. Just like all forms of computing that came before them, it’s “garbage in, garbage out.” They won’t be able to give us anything that they weren’t trained to give us. They still won’t improvise, adapt, or do new things without some prodding and more training.

The Weakness Of Neural Nets

Edge cases are the enemy of neural networks, but edge cases carry a different meaning than they do in other fields. The normal idea is that humans design things to work well in a range of expected conditions, and outside of those conditions we have no idea whether the thing will continue to work.

For example, a building in New Mexico generally only has minor adaptations (if any at all) to handle big earthquakes, and probably no real adaptations to make it withstand hurricanes, because we don’t get those things in New Mexico. The few earthquakes we get are weak, and the few hurricanes that make it this far inland just don’t have enough gusto by the time they get here to rip stuff up or flood us out like they do on the coast. Their remnants do show up sometimes, though.

Here, those things are edge cases. They fall pretty far outside of the statistical distribution of events here. People don’t build for those here. In coastal California? Yeah, you’d better build for earthquakes. In Houston? You’d better prepare for hurricanes. Thus, edge cases differ.

For neural networks, the edge cases revolve more around the networks’ training than their chances of happening in the real world. Something that happens frequently could end up being an edge case if the neural network isn’t prepared to handle it properly. If the training data didn’t prepare it for the task, it won’t perform the task properly, and it can’t improvise like we can.

This is where things get really bad. The happenings inside neural networks aren’t completely unknowable black boxes, but we don’t always know why they’re making the decisions they do about things. There’s the famous example of a machine learning tool getting better than humans at seeing the difference between photos of a Husky dog and a wolf, only for the researchers to discover that the neural network was looking at the trees and the snow (or lack thereof) to categorize dogs from wolves, and not at the dog itself.

Really, that’s pretty smart, but it wasn’t what the researchers intended at all, and could lead to false positives, like the occasional Husky in the snow. Just because the neural network gets it right 90% of the time doesn’t mean it’s even remotely capable of improvising or even guessing the other 10% of the time. When it gets to the edge of its program, that’s as far as it can go, and it will start getting things wrong.

A business using a stop sign in their logo can trip autonomous vehicles or driver assist systems into thinking there’s a real stop sign. If the moon shows up in the wrong part of the sky, it could be mistaken for a yellow traffic light. Give the network a stack of resume PDFs and tell it which ones got the job, and it might decide to never hire a woman because the training data (past hiring decisions) had a bias against women.

In the next part, we’ll explore the limitations of neural nets.

For ease of navigation for this long series of articles, links to all of them will be here once they are published:

Part 1: Why Computers Only Crunch Numbers

Part 2: Miscalibrated Trust In Mathematics

Part 3: Computers Only Run Programs

Part 4 (you are here): How Neural Networks Really Work

Part 5: What Artificial Neural Networks Can’t Do

Part 6: Self Driving Cars Are Still Very Much Possible, Despite Not Being Alive

Featured image: Screenshot from Tesla’s AI Day


Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Latest CleanTechnica TV Video


I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
 
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
 
Thank you!

Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

Jennifer Sensiba

Jennifer Sensiba is a long time efficient vehicle enthusiast, writer, and photographer. She grew up around a transmission shop, and has been experimenting with vehicle efficiency since she was 16 and drove a Pontiac Fiero. She likes to get off the beaten path in her "Bolt EAV" and any other EVs she can get behind the wheel or handlebars of with her wife and kids. You can find her on Twitter here, Facebook here, and YouTube here.

Jennifer Sensiba has 1881 posts and counting. See all posts by Jennifer Sensiba