Connect with us

Hi, what are you looking for?

CleanTechnica

Batteries

USA’s Battery500 Initiative Has Achieved Li-Metal Battery Energy Density Of 350 Wh/kg

Toward the end of President Obama’s time in office, the US Department of Energy (DOE) launched a “Battery500 Consortium.” The goal is in the name: reaching 500 Wh/kg battery energy density with lithium-metal battery cells, a target which was reportedly triple the battery energy density at the time.

Toward the end of President Obama’s time in office, the US Department of Energy (DOE) launched a “Battery500 Consortium.” The goal is in the name: reaching 500 Wh/kg battery energy density with lithium-metal battery cells, a target which was reportedly triple the battery energy density at the time. (Notably, though, an update from the consortium indicates that when the program actually started in 2017, energy density was at 300 Wh/kg.)

Additionally, the goal was to go from 10 cycles to 1,000 cycles (100% battery discharges).

A quote from the launch: “The Battery500 Consortium aims to triple the specific energy (to 500 Wh/kg) relative to today’s battery technology while achieving 1,000 electric vehicles cycles. This will result in a significantly smaller, lighter weight, less expensive battery pack (below $100/kWh) and more affordable EVs.”

The Battery500 crew recently updated us on its progress, telling us that a Li-metal pouch cell has gotten to 350 Wh/kg and 350 cycles. How? “Specifically, they developed new electrolytes with enhanced stability against Li-metal, optimized the use of thick cathodes against a thin lithium foil, and applied cell-stack pressure to extend cycling life.”

Stable Cycling of 350 Wh/kg Li/NMC622 Pouch Cell. Courtesy US DOE.

Can Battery500 reach its target? Apparently, the conclusion is yes. “Recent research on even thicker cathodes and more stable electrolytes shows a path to a 500 Wh/kg cell. Current focuses include increasing rate capability and extending cycle life.”

Getting a little bit into the overarching technical matters and the impetus of the program from the DOE, here’s a summary: “Lithium-ion (Li-ion) batteries have found wide-spread use in electric vehicles (EV) and grid-scale energy storage. This adoption is partially in response to the dramatic decrease in EV battery costs over the past ten years, from over $1000 per kilowatt-hour (kWh) to under $200/kWh. Increasing cell energy is one way to decrease cost even further, as a higher specific energy value will result in fewer materials needed for the same total battery energy. But it is difficult to increase the energy density beyond that of today’s cells, which are approximately 220 watt hours per kilogram (Wh/kg) using graphite anodes. Li-metal anodes deliver almost 10 times the storage capacity of graphite anodes, thus enabling much higher cell energies. However, Li-metal anodes suffer from poor cycle life (typically 10 cycles or less, compared to the 1000 cycle EV battery requirement).”

Consortium partners include:

  • Brookhaven National Laboratory
  • Idaho National Laboratory
  • SLAC National Accelerator Laboratory
  • Pacific Northwest National Laboratory (PNNL)
  • Binghamton University (State University of New York)
  • University of California, San Diego
  • University of Texas at Austin
  • University of Washington
  • Stanford University

Additionally, the 2019 Nobel Prize in Chemistry winners for their work on Li-ion batteries, John Goodenough and Stanley Whittingham, are on the research team.

Perhaps we can get Elon Musk’s opinion of the 350 Wh/kg achievement and 500 Wh/kg target at Tesla’s coming Battery Day.

But probably not.

 
 
Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 
Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

New Podcast: Cruise Talks Autonomous Driving Tech, Regulations, & Auto Design

New Podcast: Battery Mineral Mining Policies & Regional Trends

Written By

Zach is tryin' to help society help itself one word at a time. He spends most of his time here on CleanTechnica as its director, chief editor, and CEO. Zach is recognized globally as an electric vehicle, solar energy, and energy storage expert. He has presented about cleantech at conferences in India, the UAE, Ukraine, Poland, Germany, the Netherlands, the USA, Canada, and Curaçao. Zach has long-term investments in Tesla [TSLA], NIO [NIO], Xpeng [XPEV], Ford [F], Amazon [AMZN], Piedmont Lithium [PLL], Lithium Americas [LAC], and Starbucks [SBUX]. But he does not offer (explicitly or implicitly) investment advice of any sort.

Comments

#1 most loved electric vehicle, solar energy, and battery news & analysis site in the world.

 

Support our work today!

Advertisement

Power CleanTechnica: $3/Month

Tesla News Solar News EV News Data Reports

Advertisement

EV Sales Charts, Graphs, & Stats

Advertisement

Our Electric Car Driver Report

30 Electric Car Benefits

Tesla Model 3 Video

Renewable Energy 101 In Depth

solar power facts

Tesla News

EV Reviews

Home Efficiency

You May Also Like

Autonomous Vehicles

In a new video by Dr. Know It All on YouTube, he explains that he wanted to know whether or not Tesla cars could...

Autonomous Vehicles

The most popular CleanTechnica stories of the past two weeks were led by my thoughts on $0 spent charging after nearly 3 years with...

Cars

Originally published on EV Annex. Doesn’t it feel like the news is always so negative nowadays? Well, there is a bright spot out there. And it happen...

Cars

The Spanish government will spend up to €800 million (~$950 million) until 2023 to push electric car sales, Reuters reports. Spain’s Energy Ministry made...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.