Connect with us

Hi, what are you looking for?


 
CleanTechnica
Researchers at the University of Carlos III in Madrid are developing new software tools that can better predict the efficiency of airborne wind energy systems.

Clean Power

Kite Power! Another Wind Energy Idea Takes Flight

Researchers at the University of Carlos III in Madrid are developing new software tools that can better predict the efficiency of airborne wind energy systems.

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

AWES wind power system

Credit: UC3M

Time to add a new acronym to your lexicon of renewable energy options — airborne wind energy systems or AWES. Unlike wind turbines that require massive foundations and structures to support turbine blades, AWES systems consist of nothing more than airborne airfoils tethered to ground-mounted generating stations. The low cost and portability of AWES systems represent a significant opportunity to bring renewable energy to remote locations quickly and easily.

Researchers at the University of Carlos III in Madrid, known as UC3M, say they have software tools that allow fast, accurate simulations of how AWES technology will perform in given locations. Their research was published recently in Applied Mathematical Modeling.

“AWES are disruptive technologies that operate at high altitudes and generate electrical energy,” says Gonzalo Sánchez Arriaga, a research fellow at the department of Bioengineering and Aerospace Engineering at the UC3M. “They combine well-known disciplines from electrical engineering and aeronautics, such as the design of electric machines, aeroelasticity and control, with novel and non-conventional disciplines related to drones and tether dynamics.”

Ricardo Borobia Moreno is an aerospace engineer at the Spanish National Institute of Aerospace Technology. He says the simulator “can be used to study the behavior of AWES, optimize their design, and find the trajectories maximizing the generation of energy.”  The software is owned by UC3M but is free to be downloaded and used for research purposes by other groups, according to Science Daily.

In addition to the digital simulator tool, the researchers have developed a flight test bed for AWES composed of two kites that have been equipped to record data such as the position and speed of the kite, attack and side slip angles, and tether tensions. The experimental data was used to validate different software tools including ways to report on the status of key parameters of the kite from moment to moment.

“The preparation of the test bed has required a significant investment of time, effort and resources, but it has also raised the interest from a large number of our students. Besides research, the project has enriched our teaching activities, as many of them have carried out their undergraduate and master final projects on AWES,” says Professor Arriaga.

The research has been funded by a diverse group of benefactors ranging from the European Commission to Google. “In the project, an interesting transfer of technology and knowledge is being carried out from the world of aviation, such as the flight test methods, to the world of airborne energy,” says Professor Moreno.

What Does AWES Look Like?

If the concept of AWES is a bit difficult to grasp, this article from Science Direct may help.

AWES Diagram

Basically, there are two kinds of moving-ground-station AWES:

•‘Vertical axis generator’ (Fig. 3a) where ground stations are fixed on the periphery of the rotor of a large electric generator with vertical axis. In this case, the aircraft forces make the ground stations rotate together with the rotor, which in turn transmits torque to the generator.

•‘Rail generators’ (closed loop rail (Fig. 3b) or open loop rail (Fig. 3c)) where ground stations are integrated on rail vehicles and electric energy is generated from vehicle motion. In these systems, energy generation looks like a reverse operation of an electric train.

The odds of AWES replacing a significant proportion of wind energy generation installations are small. But for some applications, such as remote locations where transporting heavy turbine blades is infeasible, it could be an important adjunct to more traditional renewable energy strategies.

 
Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

EV Obsession Daily!


I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
 
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
 
Thank you!

Tesla Sales in 2023, 2024, and 2030


Advertisement
 
CleanTechnica uses affiliate links. See our policy here.
Written By

Steve writes about the interface between technology and sustainability from his home in Florida or anywhere else The Force may lead him. He is proud to be "woke" and doesn't really give a damn why the glass broke. He believes passionately in what Socrates said 3000 years ago: "The secret to change is to focus all of your energy not on fighting the old but on building the new."

Comments

You May Also Like

Clean Power

Thinking globally and preventing action locally is the rallying cry of soulful NIMBYs.

Clean Power

A group of more than 20 environmental organizations developed a concise guide to the science-based principles and priorities for environmental monitoring that are crucial to...

Clean Power

New Study Reveals Mixed Reactions to Flickering Shadows, Generated by Wind Energy's Shadow

Clean Power

In order to put the growth back on track in the renewable energy sector, the Indian government has turned to public sector companies. Image:...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.