Connect with us

Hi, what are you looking for?

CleanTechnica
Scientists in China have devised a way to manufacture low cost, environmentally friendly electrodes for supercapacitors from nanocellulose, the basic material in wood pulp.

Energy Storage

Chinese Researchers Make Sustainable Supercapacitors From Wood

Scientists in China have devised a way to manufacture low cost, environmentally friendly electrodes for supercapacitors from nanocellulose, the basic material in wood pulp.

Supercapacitors are touted by many as the wave of the future when it comes to battery storage for everything from cell phones to electric cars. Unlike batteries, supercapacitors can charge and discharge much more rapidly — a boon for impatient drivers who want to be able to charge their electric cars quickly.

supercapacitorThe key to supercap performance is electrodes with a large surface area and high conductivity that are inexpensive to manufacture, according to Science Daily. Carbon aerogels satisfy the first two requirements but have significant drawbacks. Some are made from phenolic precursors which are inexpensive but not environmentally friendly. Others are made from  graphene and carbon nanotube precursors but are costly to manufacture.

Researchers at the University of Science and Technology of China have discovered a new process that is low cost and sustainable using nanocellulose, the primary component of wood pulp that gives strength to the cell walls of trees. Once extracted in the lab, it forms a stable, highly porous network which when oxidized forms a micro-porous hydrogel of highly oriented cellulose nano-fibrils of uniform width and length.

Like most scientific research, there was not a straight line between the initial discovery and the final process. A lot of tweaking went on in the lab to get things to work just right. Eventually, it was found that heating the hydrogel in the presence of para-toluenesulfonic acid, an organic acid catalyst, lowered the decomposition temperature and yielded a “mechanically stable and porous three dimensional nano-fibrous network” featuring a “large specific surface area and high electrical conductivity,” the researchers say in a report published by the journal Angewandte Chemie International.

The chemists have been able to create a low cost, environmentally friendly wood-based carbon aerogel that works well as a binder-free electrode for supercapacitor applications with electro-chemical properties comparable to commercial electrodes currently in use. Now the hard work of transitioning this discovery from the laboratory to commercial viability will begin.

 
Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Written By

Steve writes about the interface between technology and sustainability from his homes in Florida and Connecticut or anywhere else the Singularity may lead him. You can follow him on Twitter but not on any social media platforms run by evil overlords like Facebook.

Comments

You May Also Like

Clean Power

In pursuit of excellence, Elon Musk has embraced the high's and low's of business, achieving successes alongside some life disappointments.

Autonomous Vehicles

These are some key areas that could be part of the Tesla Q2 earnings call today.

Batteries

Whether they are being used to power a smartphone or an electric car, lithium-ion batteries all have a few things in common. They don’t...

Cars

Volkswagen board member Thomas Ulbricht says his company will offer V2G technology on every MEB-based car starting in January, 2022.

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.