Chinese Researchers Make Sustainable Supercapacitors From Wood

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Supercapacitors are touted by many as the wave of the future when it comes to battery storage for everything from cell phones to electric cars. Unlike batteries, supercapacitors can charge and discharge much more rapidly — a boon for impatient drivers who want to be able to charge their electric cars quickly.

supercapacitorThe key to supercap performance is electrodes with a large surface area and high conductivity that are inexpensive to manufacture, according to Science Daily. Carbon aerogels satisfy the first two requirements but have significant drawbacks. Some are made from phenolic precursors which are inexpensive but not environmentally friendly. Others are made from  graphene and carbon nanotube precursors but are costly to manufacture.

Researchers at the University of Science and Technology of China have discovered a new process that is low cost and sustainable using nanocellulose, the primary component of wood pulp that gives strength to the cell walls of trees. Once extracted in the lab, it forms a stable, highly porous network which when oxidized forms a micro-porous hydrogel of highly oriented cellulose nano-fibrils of uniform width and length.

Like most scientific research, there was not a straight line between the initial discovery and the final process. A lot of tweaking went on in the lab to get things to work just right. Eventually, it was found that heating the hydrogel in the presence of para-toluenesulfonic acid, an organic acid catalyst, lowered the decomposition temperature and yielded a “mechanically stable and porous three dimensional nano-fibrous network” featuring a “large specific surface area and high electrical conductivity,” the researchers say in a report published by the journal Angewandte Chemie International.

The chemists have been able to create a low cost, environmentally friendly wood-based carbon aerogel that works well as a binder-free electrode for supercapacitor applications with electro-chemical properties comparable to commercial electrodes currently in use. Now the hard work of transitioning this discovery from the laboratory to commercial viability will begin.


Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Latest CleanTechnica TV Video


I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
 
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
 
Thank you!

Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

Steve Hanley

Steve writes about the interface between technology and sustainability from his home in Florida or anywhere else The Force may lead him. He is proud to be "woke" and doesn't really give a damn why the glass broke. He believes passionately in what Socrates said 3000 years ago: "The secret to change is to focus all of your energy not on fighting the old but on building the new."

Steve Hanley has 5400 posts and counting. See all posts by Steve Hanley