New Anode In Toshiba SCiB Battery Adds 200 Miles Of Range In 6 Minutes

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

This story about Toshiba’s next-generation SCiB battery was first published by Gas2.

When we think of electric car batteries, we think of Samsung SDI, Panasonic, LG Chem, and Tesla. The name  Toshiba seldom enters the conversation. Yet Toshiba has been toiling away in relative obscurity at the margins of battery research for several years. Now it says it has developed a new version of its SCiB battery that can be recharged in less time and at higher power than batteries from its competitors.

The anode and cathode are the keys to any battery. Those are the places where electrons rush in during charging and out again to power electric motors or other devices. The more electrons that can be stored and the faster they can move, the better. Anodes and cathodes degrade over time, reducing battery performance. Some can be damaged by physical impacts or high temperatures, leading to the escape of poisonous gases or fires.

Designing anodes and cathodes that have high energy density, long life, and low volatility is very much an occult science worthy of alchemists. Toshiba introduced its SCiB rechargeable battery cells in 2008, which differ from most other lithium-ion batteries in that they use lithium titanium oxide for the anode.

The company says LTO improves battery performance at low temperatures (we can’t all live in Palo Alto). It also gives excellent power density, long battery life, and is resistant to the damage that can occur in other batteries from external impacts. In tests, the new battery maintains 90% of its capacity after 5,000 charging cycles.

The next generation of Toshiba’s SCiB battery cells uses titanium niobium oxide for its anode material. Toshiba says it has double the storage capacity of the graphite-based anodes generally used in conventional lithium-ion batteries. The new battery has both high energy density and ultra-rapid recharging characteristics. Its titanium niobium oxide anode is less susceptible to lithium metal deposition during ultra-rapid recharging or recharging in cold conditions — a frequent cause of battery degradation and internal short circuiting.

Toshiba claims the new battery can add up to 200 miles of range to an electric car after just 6 minutes using a high-power charger, but doesn’t define what it considers “high power.” Typical DC fast charging equipment in the US operates at 50 kW. Tesla Superchargers have 135 kW of power, and ABB has just announced the first installations of chargers that have up to 350 kW of power. Which is high power? All of them? Only the latter?

“We are very excited by the potential of the new titanium niobium oxide anode and the next-generation SCiB,” said Dr. Osamu Hori, director of Toshiba’s corporate research & development center. “Rather than an incremental improvement, this is a game changing advance that will make a significant difference to the range and performance of EV. We will continue to improve the battery’s performance and aim to put the next-generation SCiB™ into practical application in fiscal year 2019.”

Source: Electric Cars Report


Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Latest CleanTechnica TV Video


Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

Steve Hanley

Steve writes about the interface between technology and sustainability from his home in Florida or anywhere else The Force may lead him. He is proud to be "woke" and doesn't really give a damn why the glass broke. He believes passionately in what Socrates said 3000 years ago: "The secret to change is to focus all of your energy not on fighting the old but on building the new."

Steve Hanley has 5437 posts and counting. See all posts by Steve Hanley