Connect with us

Hi, what are you looking for?

CleanTechnica
Scientists in Korea have claimed a new world record for the efficiency of the perovskite solar cell they have created in the lab. They think the breakthrough will contribute to a wider acceptance of PSC in the commercial world.

Clean Power

Korean Scientists Claim New Perovskite Solar Cell Record

Scientists in Korea have claimed a new world record for the efficiency of the perovskite solar cell they have created in the lab. They think the breakthrough will contribute to a wider acceptance of PSC in the commercial world.

Originally published on SolarLove.

Scientists at UNIST — the Ulsan National Institute of Science and Technology in Korea — report an important new achievement in perovskite solar cell (PSC) technology. Their research has resulted a cost effective way to produce inorganic-organic hybrid perovskite solar cells that are nearly as efficient at turning sunlight into electricity as traditional silicon cells. The scientists believe their work will lead the way to the next generation of high efficiency solar cell technology and will help accelerate the commercialization of PCSs.

Distinguished Prof. Sang-Il Seok of Energy and Chemical Engineering at UNIST. Credit: Hong Beom Ahn

Perovskite solar cells are a mixture of organic molecules and inorganic elements within a single crystalline structure. Together they capture light and convert it into electricity. They can be manufactured more easily and cheaply than silicon-based solar cells. They can also be bonded to a flexible backing, which means they can be used for many applications where traditional solar panels are not feasible, such as on the roof  and fenders of electric automobiles.

The new cells excel at what scientists call photostability, which is the ability to withstand exposure to light without a significant degradation. This new material retains 93% of its initial performance after 1,000 hours of exposure to sunlight. The synthesis of the material for the electrode can take place at temperatures as low as 200 degrees — much lower than the 900 degrees required by previous designs.

In the study, the research team has also proposed a new solar cell manufacturing methodology, entitled the ‘Hot Pressing Method’. This technique bonds two objects together by applying both temperature and pressure, which makes the production of low cost, high efficiency, and stable perovskite solar cells possible. The PSCs developed by the UNIST scored a 22.5% efficiency rating, which compares favorably to the 25% of a traditional solar cell.
“This study combines the newly-synthesized photoelectrode material and the hot-pressing method to lower the manufacturing cost to less than half of the existing silicon solar cells,” says Professor Seok, principal author of the paper. “This study helped us realize PSCs with a steady-state power conversion efficiency of 21.2% and excellent photostability. This achievement, realized by the unique technology of domestic researchers, has surpassed the conventional low efficiency and stability limit of next generation solar cell technology.”

Source and photo credit: Phys.org

Reprinted with permission.

 
Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 

Don't want to miss a cleantech story? Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Advertisement
 
Written By

Steve writes about the interface between technology and sustainability from his home in Florida or anywhere else the Singularity may lead him. You can follow him on Twitter but not on any social media platforms run by evil overlords like Facebook.

Comments

You May Also Like

Buildings

Tata Steel aims to capture the huge solar roofing market with perovskite solar cells on metal cladding.

Clean Power

The answer isn't tech, it's chem.

Research

Scientists From NREL, CU-Boulder, University of Toledo Collaborate on Improved Formula Scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have...

Clean Power

Green hydrogen is going down in cost, and concentrating solar power could pick up the pace by ditching electrolysis in favor of a thermochemical...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.