3 New Studies Show Promise For Carbon Capture

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Originally published on Nexus Media.
By Jeremy Deaton

City sidewalks and brick buildings look a little greener today, thanks to new research showing that cement can soak up CO2. That’s not the only good news to come out this week. A team of German scientists engineered photosynthesis to be faster and more efficient. And a team of Americans buried 1,000 tons of carbon pollution underground.

This research couldn’t come fast enough. Halting climate change is an uphill battle. A new tool from Climate Advisers and Climate Interactive shows just how steep the mountain is.

If humanity is to keep warming below 2º C — considered to be the upper limit of manageable climate change — we need to do more than slash carbon pollution. We must also scrub carbon dioxide from the atmosphere. Around half a century from now, we need to remove as much CO2 from the skies as we emit.

Source: Climate Advisers/Climate Interactive

You can think of our atmosphere like a bathtub. We’re pouring in carbon dioxide and other heat-trapping gasses. We need drain the tub before it overflows. That could mean growing forests or developing farms that scrub carbon from the sky. It could also mean new technologies that turn atmospheric CO2 into something benign or even useful, like fuel for your car.

Source: Climate Advisers/Climate Interactive

New research illuminates the road ahead. Here are three studies with promise for the future of carbon capture.

Store CO2 in rocks.

Scientists have long explored ways to store carbon dioxide underground. One way is to dissolve CO2 into water and inject into a subterranean layer of volcanic rocks. Carbon dioxide reacts with with the rocks, called basalts, to form a new rock, carbonate. At least that’s the idea.

A study published in the journal Environmental Science & Technology Letters shows this really works. In 2013, researchers injected 1,000 tons of liquid CO2 into a layer of basalt rock more than 4,000 feet underground. Two years later, they dug it up and showed newly formed carbonate rocks bore a human signature. Tests showed these rocks contained carbon atoms derived from fossil fuels.

Technologies that trap carbon dioxide from the atmosphere are useless if there is nowhere to dispose of the heat-trapping gas. This study shows the potential of underground storage. Basalts are abundant on Earth, and they can be used to store CO2 scrubbed from factories and power plants.

Engineer plants to capture more CO2.

For now, the most cost-effective tools for trapping CO2 are plants, algae and other photosynthesizing organisms. A leaf plucks carbon dioxide molecules from the atmosphere and uses them to make glucose in a process called the Calvin cycle.

Scientists in Germany have developed a synthetic alternative to the Calvin cycle that makes photosynthesis faster and more efficient, as explained in a new study published in the journal Science. Researchers put together 17 enzymes from nine different plants and animals to create an artificial process. Their synthetic cycle works like gangbusters in the lab. Someday, it may be introduced to bacteria and, potentially, plants.

In the years to come, we may see plants that have been engineered to trap more atmospheric carbon dioxide. This would offer another important tool in the effort to curb carbon pollution.

Capture carbon dioxide in cement.

In a related story, a new study published in Nature Geoscience finds that cement doesn’t have the environmental costs it was once thought to have.

Cement is the adhesive in materials like concrete and mortar. To create cement, producers must convert limestone to lime. This process releases CO2. Additionally, to generate the heat needed to make cement, producers burn coal or natural gas, two carbon-rich sources of energy.

As it turns out, cement-based materials like concrete actually trap carbon dioxide over decades. This process offsets a small, but not insignificant portion of the carbon pollution associated with construction.

The results of the study offer another reminder that our efforts should focus on fossil fuels — coal, oil and gas — and not building materials. We should invest heavily in the emerging slate of technologies that will clean up the mess fossil fuels leave behind.

Reprinted with permission.

Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

CleanTechnica Holiday Wish Book

Holiday Wish Book Cover

Click to download.

Our Latest EVObsession Video

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
Thank you!

CleanTechnica uses affiliate links. See our policy here.

Guest Contributor

We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people, organizations, agencies, and companies.

Guest Contributor has 4313 posts and counting. See all posts by Guest Contributor