Teslapathic — Cal Hacks 3.0 Creates Mind-Controlled Tesla Model S (Video)

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Teslapathic. What does that even mean? It’s the term used by Cal Hacks 3.0 — a group at UC Berkeley that works together on various projects — for the mind-controlled Tesla Model S tech that they’re working on.

A program that the group has created allows for some basic control of a Tesla Model S through the use of an EEG headset and some proprietary algorithms (to oversimplify it) — hence the term “Teslapathic.”

Rather than tease this too much, just watch the video below to get a better idea of what I’m talking about.

So, the group’s goal is “Mind control of a Tesla Model S” — as they put it.

Rather than paraphrase too much, I’ll just quote a bit from the group’s own rundown of what they’re doing (via Devpost):

tl;dr — An EEG headset determines whether the user is thinking “Stop” or “Go,” which is translated into an analog signal, then broadcast by an RC radio, and articulated by actuators on the pedals and a motor on the steering wheel.

Teslapathic is comprised of three primary systems: Machine learning with OpenBCI, a digital to analog interface through Arduino, and a hardware control system.

OpenBCI: We created a machine learning training program that compiles averages of the user’s neural activity when thinking “Stop” and “Go.” The user is also encouraged to assign the thought of a physical action with each command when creating their activity profile, as focusing the EEG nodes around the brain’s motor cortex while imagining physical motion in tandem with the desired command had the highest rate of success. For example, Casey would think of tapping his right foot for “Go” and clenching his left hand for “Stop.” A k-nearest neighbors algorithm was employed to reduce signal noise. After ascertaining the user’s intent, corresponding variables are then generated and passed off to an Arduino for conversion to an analog signal.

Analog conversion: In order for our digital system to interact with our analog hardware, we leveraged an off the shelf RC radio — a Futaba T9CHP — and exploited its trainer feature to allow for communication between the OpenBCI and the driving hardware. By having an Arduino mimic the PPM timings sent by a slave radio, the T9CHP effectively becomes an analog pass-through and delivery method. The PPM signal is manipulated in accordance with the user’s intent, which results in articulation of the driving hardware. The head-mounted gyro was spliced inline between the Arduino and the radio and results in additional signal manipulation.

Hardware control: Linear actuators were affixed to the pedals, and a windshield wiper motor fitted with a potentiometer was mounted to the steering wheel. “Go” (in the form of the corresponding analog signal) results in the brake actuator receding and the accelerator actuator engaging, “Stop” results in the opposite. Left and right movement from the gyro results in left and right movement from the wheel. Still reading? Congratulations! You made it through my convoluted explanation!

Safety: We implemented multiple safety measures: an emergency brake in the Arduino portion of the code in case of failure, the user needs to be holding a dead-man’s switch in order for the signal to broadcast, we wedged a physical block behind the accelerator to prevent it from going too fast, the user can take manual control through the radio at any time, and if all else fails the actuators were pressure fit so the user could reach their leg into the driver footwell and kick them away from the pedals.

Interestingly, the group noted that training the algorithms to clearly differentiate between “Go” and “Stop” was a laborious process, but they now think that they’ve “achieved a high degree of accuracy.”

Not bad for a 36-hour project. 🙂

Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

CleanTechnica Holiday Wish Book

Holiday Wish Book Cover

Click to download.

Our Latest EVObsession Video

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
Thank you!

CleanTechnica uses affiliate links. See our policy here.

James Ayre

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

James Ayre has 4830 posts and counting. See all posts by James Ayre