Connect with us

Hi, what are you looking for?

Xerox's cutting edge PARC company has teamed with Sandia National Laboratories to print low cost, super efficient concentrating solar panels.

Clean Power

Xerox Could Blow Open Concentrating Solar Power Field With New Printer

Xerox’s cutting edge PARC company has teamed with Sandia National Laboratories to print low cost, super efficient concentrating solar panels.

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Concentrating solar tech has been getting the stinkeye from some industry observers, with the main beefs being high complexity and high costs compared to conventional solar panels. Nevertheless, the US Energy Department has made a national showpiece out of five gigantic utility-scale thermal solar power plants, and last year the agency threw some grant dollars at Xerox’ cutting edge PARC company to work on the micro-scale, photovoltaic end of the concentrating solar field.

solar xerox printer

#thanksobama For Micro-Solar Tech

The PARC micro-scale concentrating solar project aims at whittling down both the cost and complexity of concentrating solar power, by integrating tiny hexagonal solar elements directly into a flat panel.

The solar elements, measuring 150 x 150 micrometers, were developed by Sandia National Laboratories and can be mass produced using conventional MEMS (microelectronic and microelectromechanical systems) fabrication technology.

Sandia is partnering with PARC on the current project, so group hug for US taxpayers.

CleanTechnica took a look at Sandia’s micro-solar work back in 2009, when it was still under development. The lab was excited about the potential for using the glitter-sized elements to solarize irregular surfaces such as fabrics and roof shingles:

The tiny cells could turn a person into a walking solar battery charger if they were fastened to flexible substrates molded around unusual shapes, such as clothing.

The solar particles, fabricated of crystalline silicon, hold the potential for a variety of new applications. They are expected eventually to be less expensive and have greater efficiencies than current photovoltaic collectors that are pieced together with 6-inch- square solar wafers.

Cheaper Concentrating Solar, Micro-Scale Style

The Sandia micro-solar elements solve one part of the cost problem by using a fraction of silicon to accomplish what a larger chunk would provide in terms of conversion efficiency.

PARC is aiming to reduce the cost of the manufacturing part, and our friends over at MIT Technology Review recently took a look and had this to say:

The new process will build on a larger effort by PARC researchers to invent a new kind of printer that can precisely deposit “inks” made of tiny semiconductor chips, called “chiplets,” by using assembly principles similar to those behind Xerox photocopiers.

Last summer, the PARC research team presented their work at the 42nd IEEE Photovoltaic Specialists Conference.

Here’s how they described the manufacturing problem at hand:

Unfortunately, one of the essential and unfavorable scaling factors is the assembly cost due to the many micro-scale components that must be deposited, positioned, oriented, and connected over large areas.

The solution is something that PARC calls a “general, massively parallel, high throughput micro-assembly tool.” The process translates Xerox’ printing expertise into solar manufacturing:

In this digital manufacturing process, the “inks” are micron-scaled PV components that Sandia has developed and the “image” is the micro-CPV module itself.

The team demonstrated enough milestones to win a grant last September from the Energy Department’s cutting edge ARPA-E funding agency, to develop the micro-scale solar printer for commercial application under the agency’s MOSAIC (Micro-scale Optimized Solar-cell Arrays with Integrated Concentration) initiative. 


MOSAIC aims to tackle one of the main obstacles for deploying concentrating photovoltaic solar technology throughout more areas of the US. Currently the technology is effective only in the southwest, where direct sunlight is optimal. If the technology could be improved to handle diffuse sunlight (scattered by clouds and other atmospheric conditions), then concentrating rooftop solar panels could become common in a much broader geographic area of the country.

MOSAIC also takes aim at the rooftop solar market from the size angle. Smaller, more efficient panels would make it possible to reach down to smaller roofs, or roofs that are only partially exposed to enough sunlight.

As for the concentrating solar thermal technology projects referenced at the top of this article, the Energy Department seems to be satisfied with its stable of five utility-scale solar power plants for now, but last year it launched a new round of $32 million in funding aimed at bringing down the cost of concentrating solar power to compete with conventional energy, so stay tuned.

Follow me on Twitter and Google+.

Image: Hexagonal solar elements via Sandia National Laboratories.

Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

EV Obsession Daily!

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
Thank you!

Tesla Sales in 2023, 2024, and 2030

CleanTechnica uses affiliate links. See our policy here.
Written By

Tina specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Views expressed are her own. Follow her on Twitter @TinaMCasey and Spoutible.


You May Also Like


Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News! On a brisk morning this fall, a 46-foot...

Clean Power

U.S. Department of Energy and National Science Foundation Announce First Cohort in the INTERN Program to Support Growth of the Geothermal Energy Workforce


Bigger and better quantum computers possible with new ion trap, dubbed the Enchilada.

Clean Power

New Database Quantifies What the Country Needs To Meet Its Big Clean Energy Goals

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.