Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Power

The Energy Trap, & How The World & The UAE Can Avoid It

Sustainnovate.

SigourisSince the middle of 18th century, mankind has been using fossil fuel energy as a bank account, from which we collectively withdraw every year using a peculiar sort of ATM.

It is peculiar because we need to deposit a small amount in order to get the amount we want in return – the ratio of the amount we withdraw to the amount we deposit is energy return on energy invested (EROEI).

Fundamentally, we invest energy to be able to get more energy. Fossil fuels used to be plentiful and easy to get at; that gave them a high EROEI. Enjoying this bonanza, our collective withdrawals increased exponentially.

But that ATM draws from a limited account; fossil fuels are finite.

Today we are hitting the limit of the energy ATM. We can’t withdraw any more energy without depositing a lot more than we once did. This increase in the EROEI, which currently ranges between 10 and 30, is arguably contributing to the protracted global recession.

Given the limited fossil energy bank account, we must find ways to “invest” that will give us a reliable energy income in the future but also to use energy income more efficiently.

Investing in renewable energy does not pay back immediately but over a longer time frame – more like a capital investment. If we don’t invest enough, and we wastefully use our fossil account, we risk falling into an energy trap: we will find it impossible to invest enough energy in the short term to withdraw enough to meet the needs of nine billion humans.

The consequences would be dire. Our critical infrastructure systems that provide us with food, water, transportation, and shelter rely on large amounts of energy. But if we leave ourselves insufficient surplus credit, we could be stuck without the means to jumpstart the requisite renewable energy investment.

So how do we avoid this? How much should we invest in the transition to renewables, and how soon? What forms should it take? As part of my research at the Masdar Institute Center for Smart and Sustainable Systems (iSmart), I have examined the requirements and limitations that such an energy transition entails.

In order for this transition to be indeed “sustainable,” we would need to concern ourselves with each of the three sustainability pillars (environmental, social, and economic).

First, neither fossil fuels nor renewables should be allowed to impact the environment irreparably.

Second, a minimum level of energy should be available per person and any changes in energy availability must be smooth and allow adaptation.

Third, the rate of investment in renewable energy should be enough to compensate for the reduced fossil fuel supply.

Finally, the amount of consumption that we do today using monetary debt and the availability of energy to service that debt in the future should balance.

Representing these principles through mathematical relationships, we can calculate net energy availability. If we allow fossil fuels to run their course, we will need to increase our current rate of investment in renewables fourfold.

This, though, would create an unlivable planet due to climate change. To meet the IPCC recommendations that offer a 50% chance of a manageable climate, we need an eightfold increase of our investment in renewables.

For the UAE – a major oil exporter blessed with one of the higher EROEI for its fossil wealth – a global sustainable energy transition implies that the UAE will be able to export fossil fuels when other less competitive extraction, such as shale oil, tar sands, and deep oil, has stopped.

Nevertheless, the country will need to accelerate its proactive preparation for a reliance on a sustainable energy system because it allows it to prolong the use of its fossil wealth into the future.

Even before nuclear power comes online, solar energy can scale massively. At today’s prices, photovoltaic generation is competing positively with liquefied natural gas imports and our existing grid can easily accept several thousand megawatts without substantial change.

We cannot afford to wait to scale up in the future – this transition takes time, and the time to start is now.

Editor’s Note: Sgouris Sgouridis’s paper on the topic can be accessed here.

Source: Sustainnovate. Reproduced with permission.

 
Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 
 

Advertisement
 
Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Written By

We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people, organizations, agencies, and companies.

Comments

You May Also Like

Batteries

The Dubai Electricity and Water Authority (DEWA) announced the inauguration of a pilot project for energy storage at the Mohammed bin Rashid Al Maktoum...

Bicycles

EMotorad (EM), an Indian premium e-bike manufacturer, has announced the launch of e-bikes in the United Arab Emirates (UAE). The company stated that it’s...

Clean Power

A gas-and-electric utility dreams of a decarbonized future for the US with an assist from green hydrogen and long duration energy storage.

Buildings

Q&A with LA100 Study Lead Jaquelin Cochran For decades, power system planning has optimized costs and efficiency over the experiences of some communities, meaning...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.