Connect with us

Hi, what are you looking for?


Clean Power

MIT Turns Solar Steam Into Cheaper Energy, Clean Water

Properties of graphite popcorn systemMIT scientists and engineers have a new twist on phase-changing renewable technology. It combines the most efficient generation of solar steam to date by our favorite energy machine, the sun, and a new graphite-based collection system.

This method puts out the lowest optical concentration reported thus far: steam generation at an intensity about 10 times that of a sunny day. The new material will enable steam generators to function with much lower sunlight concentration and cheaper tracking systems. It has the potential to replace both the super-high-intensity nanoparticle generation method and the relatively inefficient and massive mirror fields previously used to produce steam.

The secret is a material that can both efficiently absorb sunlight and generate steam at a liquid’s surface. It is hydrophilic and thermally insulating, absorbs in the solar spectrum, and has interconnected pores. Hadi Ghasemi, a postdoc in MIT’s Department of Mechanical Engineering, led the development of the structure. He and and mechanical engineering head Gang Chen, along with five others at MIT, report on the details of the new steam-generator in the journal Nature Communications.

Basically, the solar steam process starts by exfoliating a thin layer of graphite. You place it in a microwave and create graphite “popcorn.” The graphite bubbles up and forms a nest of flakes, resulting in a porous material that absorbs and retains solar energy more effectively than current methods.

Researchers then array the material on a thin, double-layered, disc-shaped structure, graphite on top. On the bottom is a sponge-like carbon foam containing pockets of air that both keep the foam afloat and insulate the underlying liquid. This foam has very small pores to allow water to float up through the structure via capillary action.

Cross-section of representative solar-to-steam structure (MIT)Enter the sunlight. It hits the structure and creates a hotspot in the graphite layer. The pressure gradient  generated draws water up through the carbon foam. As water seeps into the graphite layer, the heat concentrated in the graphite turns the water into steam.

In principle, it’s just like a sponge placed in water on a hot, sunny day, which can continuously absorb and evaporate liquid. Along with its potential power uses, the solar steam system will be able to desalinate and/or decontaminate impure and waste water. One commenter suggested that one day, it may even enable solar-powered hot water cars! Scaled up, this arrangement of relatively inexpensive materials would likely eliminate the need for complex, costly systems to concentrate sunlight. The research team was able to convert 85% of solar energy into steam at an intensity 10 times that of a typical sunny day. Ghasemi says different combinations of materials used in the two layers may lead to even higher efficiencies at lower concentrations. More work for MIT, and greater glory.

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Former Tesla Battery Expert Leading Lyten Into New Lithium-Sulfur Battery Era — Podcast:

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Written By

covers environmental, health, renewable and conventional energy, and climate change news. She's currently on the climate beat for Important Media, having attended last year's COP20 in Lima Peru. Sandy has also worked for groundbreaking environmental consultants and a Fortune 100 health care firm. She writes for several weblogs and attributes her modest success to an "indelible habit of poking around to satisfy my own curiosity."


You May Also Like


OEMs that try to roll bespoke engineered solutions, niche chemistries, or custom designed battery assemblies are making the wrong strategic decisions.

Clean Power

The Canadian startup XlynX aims to improve perovskite solar cells with a new advanced adhesive.


Nuclear for commercial ships is so obviously flawed from a business perspective that I didn't even bother to include it in my quadrant chart...


The future of all ground transportation and an awful lot of aviation and marine shipping being electric, low-carbon, quieter, and a lot less smelly...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.