Connect with us

Hi, what are you looking for?


Clean Power

Graphene Stretchability Improved With New Technique

A new technique to improve the stretchability of graphene has been devised by researchers from North Carolina State University and the University of Texas. The work done by the researchers has also revealed a great deal about graphene’s mechanical properties that wasn’t previously known — findings which the researchers think should aid in the development of new technologies.

While graphene is an incredibly promising material, there is still so much that is unknown about it that most of its potential is currently just theoretical. More needs to be known about its mechanical properties, especially how it works/interacts with other materials, before its potential can be fully utilized — something which this new work has begun to do.

“This research tells us how strong the interface is between graphene and a stretchable substrate,” states Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and co-author of a paper on the work. “Industry can use that to design new flexible or stretchable electronics and nanocomposites. For example, it tells us how much we can deform the material before the interface between graphene and other materials fails. Our research has also demonstrated a useful approach for making graphene-based, stretchable devices by ‘buckling’ the graphene.”

Graphene - Credit: nobeatsofierce/Shutterstock.

Image Credit: 3D model of graphene sheet via Shutterstock.

North Carolina State University provides details on the research:

The researchers looked at how a graphene monolayer — a layer of graphene only one atom thick — interfaces with an elastic substrate. Specifically, they wanted to know how strong the bond is between the two materials because that tells engineers how much strain can be transferred from the substrate to the graphene, which determines how far the graphene can be stretched.

The researchers applied a monolayer of graphene to a polymer substrate, and then stretched the substrate. They used a spectroscopy technique to monitor the strain at various points in the graphene. Strain is a measure of how far a material has stretched.

Initially, the graphene stretched with substrate. However, while the substrate continued to stretch, the graphene eventually began to stretch more slowly and slide on the surface instead. Typically, the edges of the monolayer began to slide first, with the center of the monolayer stretching further than the edges.

“This tells us a lot about the interface properties of the graphene and substrate,” Zhu states. “For the substrate used in this study, polyethylene terephthalate, the edges of the graphene monolayer began sliding after being stretched 0.3 percent of its initial length. But the center continued stretching until the monolayer had been stretched by 1.2 percent to 1.6 percent.”

It was also discovered that when the elastic substrate was allowed to return to its original state/length, that the graphene monolayer buckled. This buckling creates ridges in the graphene that made it permanently more stretchable — creating structures like the bellows of an accordion. The researchers note that the technique for creating the buckled material is very similar to the one previously developed for creating elastic conductors out of carbon nanotubes.

The new research was just published on August 1 in the journal Advanced Functional Materials.

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Written By

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.


You May Also Like


Originally published on The U.S. National Science Foundation. WASHINGTON — Last week, the U.S. National Science Foundation announced the establishment of 11 new NSF National...


An Australian company says it is testing an aluminum-ion battery that charges faster and stores more energy than any lithium-ion battery. But is that...

Clean Power

The promise of marine energy is seemingly boundless — and thanks to a recently upgraded tool powered by new high-resolution data sets, users can...


Roanoke Electric Cooperative is working with Fermata Energy to pilot the first electric vehicle (EV) charging system equipment to meet the North American standard...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.