Connect with us

Hi, what are you looking for?

CleanTechnica

Buildings

Energy-Efficient Windows Inspired By Nature — New Bio-Inspired Approach To Thermal Cooling Could Be Applied To Solar Panels

A new type of energy-efficient window — inspired by and recreating the vascular networks found within living organisms — has been created by researchers at the University of Toronto. The new windows work effectively to limit heat loss during the winter and provide a cooling effect during the summer. The new design has resulted in 7–9 degrees of cooling in laboratory experiments. The researchers also think that their new technique/design could be applied to solar panels, working to increase their functional efficiency thanks to the cooling effect.

The new process is, in the words of the researchers themselves, a “bio-inspired approach to thermal control for cooling (or heating) building window surfaces,” one that works through the action of optically clear, flexible, elastomer sheets, which are attached and bonded to normal glass window panes. The attached elastomer sheets — which are composed of polydimethylsiloxane (PDMS) — feature ‘channels’ through which room-temperature water is free to flow. It’s this flowing water that provides the thermal controlling effects.

“Our results show that an artificial vascular network within a transparent layer, composed of channels on the micrometer to millimeter scale, and extending over the surface of a window, offers an additional and novel cooling mechanism for building windows and a new thermal control tool for building design,” stated Ben Hatton, lead researcher and a professor of engineering at the University of Toronto.

energy efficient windows thermal cooling solar energy

“A. Schematic of the composite window structure. B. The artificial vascular network layer.”
Image Credit: University of Toronto Faculty of Applied Science & Engineering


As the researchers note, windows currently account for around 40% of all building energy costs — any improvements with regard to their thermal regulatory abilities would be valuable. Hatton continued: “In contrast to man-made thermal control systems, living organisms have evolved an entirely different and highly efficient mechanism to control temperature that is based on the design of internal vascular networks. For example, blood vessels dilate to increase blood flow close to the skin surface to increase convective heat transfer, whereas they constrict and limit flow when our skin is exposed to cold.”

As Hatton notes — the new technique could probably very effectively be applied to solar panels, and could also function well as a means of supplying heated water to existing hot water or heat storage systems.

The new research was just published in the journal Solar Energy Materials & Solar Cells.

 
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Former Tesla Battery Expert Leading Lyten Into New Lithium-Sulfur Battery Era — Podcast:



I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Advertisement
 
Written By

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

Comments

You May Also Like

Batteries

US banks on flow batteries for rapid decarbonization, eyeballs at least 300 gigawatt-hours of battery-type energy storage online by 2030.

Air Quality

Two friends recently bought electric cars for their families after thinking about it for a long time. Beyond wanting to congratulate them, and click...

Buildings

Energy efficiency can help slow the rate of climate change. Learn about making your home more efficient so you can reduce carbon production and...

Air Quality

The latest science warns that the window for preventing the most catastrophic global warming is closing fast. A seemingly small difference — just half...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.