Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Power

Hi-Tech Spit And Polish Improves Solar Cell Efficiency

Along with the well-known enemies of solar cell efficiency such as dust and pollen, a known unknown recently popped up when researchers began to realize that traces of residue left over from the manufacturing process can reduce the efficiency of solar cells, long before they are exposed to the harsh realities of the outdoor environment. Well, it looks like we can take the “unknown” out of the equation, as researchers from Argonne National Laboratory have just announced that they have nailed the culprit.

Argonne researchers find key to solar cell efficiency

Wash Me Now by badjonni.

Solar Power Cheaper Than Fossil Fuels

The residue issue involves organic photovoltaics (OPVs), a next generation class of solar cells that can be made from cheap, abundant materials. In contrast to silicon, which is a metalloid, OPVs are based on organic polymers, aka plastic.

Although OPVs are less efficient at converting sunlight than silicon, the low cost of the materials partly offsets that factor.

Another offsetting factor is the manufacturing process for OPVs, which is far cheaper than fabricating silicon solar cells. Generally, OPVs can be applied to any flexible, lightweight substrate using standard, high-volume manufacturing processes such as spray-painting or roll-to-roll fabrication.

A third factor is the range of applications that OPVs can have in terms of building integrated solar power, including transparent solar cells that can replace window glass.

Despite all these advantages, the relatively low conversion efficiency of OPVs is still a stumbling block, and in order to keep costs trending downward researchers need to pack greater efficiency into a smaller space, making a solution to the residue issue all the more imperative.

A Key To Solar Cell Efficiency

One step in the right direction occurred when researchers realized that there was actually an OPV residue issue; namely, that nanoscale bits of the catalyst used in the manufacturing process (typically the metal palladium) were probably left in the finished product.

That would reduce efficiency by trapping some of the electric charge generated by the solar cell, and to make matters worse, it also creates a note of uncertainty in commercial solar cell performance, since the amount of residue would be expected to vary from one batch to another.

That made identifying the residue all the more imperative, but for a while researchers were at a loss to find equipment delicate and detailed enough to do the job.

The breakthrough came when a research team guided by Seth Darling of Argonne National Laboratory hit upon the idea of setting the lab’s Advanced Photon Source (APS) loose on the problem.

APS, which has been undergoing an eight-year upgrade project, is billed as the provider of the “brightest storage ring-generated x-ray beams in the Western Hemisphere.”

As described by Argonne writer Jared Sagoff, Darling’s team used high-intensity X-rays from APS to create a fluorescent effect, similar to the way that crime scene investigators use fluorescent equipment to sweep a dark room for mystery liquids and other substances.


With the evidence gleaned from APS, the team identified and quantified traces of a catalyst used during the manufacturing process (that would be the aforementioned metal, palladium).

We Built This!

This discovery is no laboratory hothouse flower. According to Sagoff, the photovoltaic industry is already beginning to make chemical and process adjustments to help reduce residue, in advance of new developments that could prevent it altogether.

So, fellow taxpayers, let’s all pat ourselves on the back for funding yet another shared public research facility that would be impossible to build with private sector dollars, but which directly benefits U.S. companies and improves their prospects for competing in global markets.

Follow me on Google+ and Twitter.

 
I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
 

Written By

Tina specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.

Comments

You May Also Like

Aviation

New batteries could one day power cars, airplanes, trucks.

Batteries

Woke or not, the US Army has invested $10 million in new silicon battery technology.

Batteries

Researchers at Argonne National Laboratory say they have found ways to make stable lithium-sulfur batteries that last 700 cycles.

Clean Transport

After a bumpy start, the US startup Nikola is closing in on its vision of hydrogen fuel cell trucks, fueled by green hydrogen.

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.

Advertisement