Connect with us

Hi, what are you looking for?

CleanTechnica

Batteries

Battery Design Could Help Solar And Wind Power The Grid

This post first appeared on the SLAC National Accelerator Laboratory website
by Mike Ross

Researchers from the US Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life battery that could enable solar and wind energy to become major suppliers to the electrical grid.

Yi Cui with an experimental battery at Stanford University

“For solar and wind power to be used in a significant way, we need a battery made of economical materials that are easy to scale and still efficient,” said Yi Cui, a Stanford associate professor of materials science and engineering and a member of the Stanford Institute for Materials and Energy Sciences, a SLAC/Stanford joint institute. “We believe our new battery may be the best yet designed to regulate the natural fluctuations of these alternative energies.”

The Ideal Batteries for Grid-Scale Solar & Wind

Currently the electrical grid cannot tolerate large and sudden power fluctuations caused by wide swings in sunlight and wind. As solar and wind’s combined contributions to an electrical grid approach 20 percent, energy storage systems must be available to smooth out the peaks and valleys of this “intermittent” power – storing excess energy and discharging when input drops.

Among the most promising batteries for intermittent grid storage today are “flow” batteries, because it’s relatively simple to scale their tanks, pumps and pipes to the sizes needed to handle large capacities of energy. The new flow battery developed by Cui’s group has a simplified, less expensive design that presents a potentially viable solution for large-scale production.

Today’s flow batteries pump two different liquids through an interaction chamber where dissolved molecules undergo chemical reactions that store or give up energy. The chamber contains a membrane that only allows ions not involved in reactions to pass between the liquids while keeping the active ions physically separated. This battery design has two major drawbacks: the high cost of liquids containing rare materials such as vanadium – especially in the huge quantities needed for grid storage – and the membrane, which is also very expensive and requires frequent maintenance.

Flow battery designs

These diagrams compare Stanford/SLAC’s new lithium-polysulfide flow battery design with conventional “redox” flow batteries. The new flow battery uses only one tank and pump and uses a simple coating instead of an expensive membrane to separate the anode and cathode. (Credit: Greg Stewart/SLAC)

New Chemistry

The new Stanford/SLAC battery design uses only one stream of molecules and does not need a membrane at all. Its molecules mostly consist of the relatively inexpensive elements lithium and sulfur, which interact with a piece of lithium metal coated with a barrier that permits electrons to pass without degrading the metal. When discharging, the molecules, called lithium polysulfides, absorb lithium ions; when charging, they lose them back into the liquid. The entire molecular stream is dissolved in an organic solvent, which doesn’t have the corrosion issues of water-based flow batteries.

“In initial lab tests, the new battery also retained excellent energy-storage performance through more than 2,000 charges and discharges, equivalent to more than 5.5 years of daily cycles,” Cui said.

[youtube http://www.youtube.com/watch?v=q-qrUBMoqLs&version=3&hl=en_US]

To demonstrate their concept, the researchers created a miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy. (Credit: SLAC National Accelerator Laboratory)

In the future, Cui’s group plans to make a laboratory-scale system to optimize its energy storage process and identify potential engineering issues, and to start discussions with potential hosts for a full-scale field-demonstration unit.

Cui and colleagues report their research results, some of the earliest supported by the DOE’s new Joint Center for Energy Storage Research battery hub, in the May issue of Energy & Environmental Science.

Yi Cui with an experimental battery at Stanford University

Citation: Yuan Yang, Guangyuan Zheng and Yi Cui, Energy Environ. Sci., 2013 (10.1039/C3EE00072A)

 
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Former Tesla Battery Expert Leading Lyten Into New Lithium-Sulfur Battery Era — Podcast:



I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Advertisement
 

programs explore the ultimate structure and dynamics of matter and the properties of energy, space and time -- at the smallest and largest scales, in the fastest processes and at the highest energies -- through robust scientific programs, excellent accelerator-based user facilities and valuable partnerships. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science.

Comments

You May Also Like

Boats

Nuclear for commercial ships is so obviously flawed from a business perspective that I didn't even bother to include it in my quadrant chart...

Aviation

The future of all ground transportation and an awful lot of aviation and marine shipping being electric, low-carbon, quieter, and a lot less smelly...

Aviation

We have enough waste biomass feedstock to fulfill all of our transportation needs, and the market and a bunch of bright people will figure...

Clean Power

The massive new SunZia wind energy transmission line is closing in on the finish line, ESG or not.

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.