New Nanoparticle Alloys Allow Heat To Be Manipulated As If It Were Light, Applications In Thermoelectrics And Energy Efficiency

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

A new technique has been developed that now makes it possible to manipulate heat as if it were light, controlling it in the same ways that you can control light waves. This technique could have a lot of very interesting uses in thermoelectric devices and for developing energy efficiency systems in buildings.


The technique is based on “engineered materials consisting of nanostructured semiconductor alloy crystals,” the Massachusetts Institute of Technology (MIT) writes. “Heat is a vibration of matter — technically, a vibration of the atomic lattice of a material — just as sound is. Such vibrations can also be thought of as a stream of phonons — a kind of ‘virtual particle’ that is analogous to the photons that carry light. The new approach is similar to the recently developed photonic crystals that can control the passage of light, and phononic crystals that can do the same for sound.”

By controlling the spacing of tiny gaps that are present in these materials, it’s possible to tune them to match up with the wavelength of the heat phonons.

“It’s a completely new way to manipulate heat,” Martin Maldovan, research scientist in MIT’s Department of Materials Science and Engineering says. “Heat differs from sound, he explains, in the frequency of its vibrations: Sound waves consist of lower frequencies (up to the kilohertz range, or thousands of vibrations per second), while heat arises from higher frequencies (in the terahertz range, or trillions of vibrations per second).”

The overall process (while more complex than this), is essentially to ‘reduce’ the heat phonons until they are more similar to sound waves, and then manipulate the narrowed beam of “hypersonic heat” that results, by using phononic crystals like the ones used to control sound phonons. These are being referred to as “thermocrystals” by the researchers.

The researchers think that these thermocrystals could be used very effectively for a wide variety of interesting purposes. Among these possibilities are: better thermoelectric devices, “one-way heat flows” that would be very useful for energy efficiency, and “thermal cloaking”, which has a wide-variety of potential uses.

The new findings were just published January 11th in the journal Physical Review Letters.

Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

CleanTechnica Holiday Wish Book

Holiday Wish Book Cover

Click to download.

Our Latest EVObsession Video

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
Thank you!

CleanTechnica uses affiliate links. See our policy here.

James Ayre

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

James Ayre has 4830 posts and counting. See all posts by James Ayre

3 thoughts on “New Nanoparticle Alloys Allow Heat To Be Manipulated As If It Were Light, Applications In Thermoelectrics And Energy Efficiency

Comments are closed.