Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Power

New Inexpensive and More Environmentally Friendly Solar Cell

 
Researchers from Northwestern University have devised a new design of a solar cell that minimizes the flaws in conventional solar cells — relatively high production costs, low operating efficiency and durability, and reliance upon toxic and scarce materials.

Dye-sensitized solar cells have already addressed some of these issues, but up until now have been very inefficient. Northwestern nanotechnology expert Robert P.H. Chang, however, challenged chemist Mercouri Kanatzidis to design a solar cell that did not suffer from the same problem as the innovative dye-sensitized Grätzel cell, a low-cost and environmentally friendly solar cell that “leaks” (the main cause of the lost efficiency). Kanatzidis’ solution was to design a new material for the electrolyte that actually starts as a liquid but ends up as a solar mass.

“The Grätzel cell is like having the concept for the light bulb but not having the tungsten wire or carbon material,” said Kanatzidis, of the need to replace the troublesome liquid. “We created a robust novel material that makes the Grätzel cell concept work better. Our material is solid, not liquid, so it should not leak or corrode.”

Kanatzidis reportedly “knew that scientists at IBM and elsewhere had been developing good solid electrical semiconductors for years” and teamed up with Chang to try one of them, “a fluorine-spiked mixture of cesium, tin, and iodine,” in solar cells.

Chang, a professor of materials science and engineering at the McCormick School of Engineering and Applied Science, and Kanatzidis, the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences, are the two senior authors of a new paper outlining the development of the new solar cell. The paper was published in the most recent edition of the journal Nature.

The solar cell developed by Northwestern exhibits the highest conversion efficiency so far reported for a solid-state solar sell equipped with a dye sensitizer, approximately 10.2 percent (10% is often considered a benchmark for commercial success). This figure is close to the highest reported performance of a Grätzel cell of around 11 to 12 percent, and is much higher than the 6% previously attained by dye-sensitized solar cells.

“Our inexpensive solar cell uses nanotechnology to the hilt,” Chang said. “We have millions and millions of nanoparticles, which gives us a huge effective surface area, and we coat all the particles with light-absorbing dye.”

For more information on the design and construct of the Northwestern solar cell, check out the paper in Nature.

Source: Northwestern University & ScienceNOW
Image Source: R Walker

 
Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 
 

Advertisement
 
Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Written By

I'm a Christian, a nerd, a geek, and I believe that we're pretty quickly directing planet-Earth into hell in a handbasket! I also write for Fantasy Book Review (.co.uk), and can be found writing articles for a variety of other sites. Check me out at about.me for more.

Comments

You May Also Like

Clean Power

A team from Northwestern University has figured out how Harrison Ford can improve your solar cell efficiency and lower your manufacturing costs, too.

Clean Power

Carbon nanotube solar cells have long been viewed as being a photovoltaic technology that possesses considerable potential for wide-scale commercial use — thanks to...

Clean Power

By Sam Stranks A new material has entered the emerging low-cost photovoltaics arena and is threatening to blow much of the existing competition away. Power...

Nuclear Energy

The 2011 tsunami that struck the Fukushima Daiichi nuclear plant in Japan left the complex in disarray, contaminated and broken. The Japanese government subsequently...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.