Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Power

Even After a Thousand Folds, Exotic Material Maintains Conductivity

Exotic Material Shows Its Practical Side

An array of microcircuits made of a 10-nanometer-thick film of bismuth sulfide, an exotic material called a topological insulator, on an insulating mica substrate can be flexed without damaging its electrical properties.

An international team of scientists with roots at SLAC National Accelerator Laboratory and Stanford has shown that ultra-thin sheets of an exotic material remain transparent and highly conductive even after being deeply flexed 1,000 times and folded and creased like a piece of paper.

The result could open this class of unusual materials, called topological insulators, to its first practical applications: flexible, transparent electrodes for solar cells, sensors, and optical communications devices.

“It’s rare for a good conductor to be both transparent and durable as well,” said Zhi-Xun Shen of SLAC and Stanford’s Institute for Materials and Energy Sciences (SIMES).

The team displayed the capabilities of their topological insulator in a short video:

Researchers led by Shen, Zhongfan Liu and Hailin Peng of Peking University in China, and Yulin Chen of Oxford University in England published their results last week in Nature Chemistry. Until recently, Peng and Chen were graduate students and postdoctoral researchers at Stanford and SIMES. They have continued to collaborate with Shen’s research team after being named professors at their current universities.

Ultrathin Bismuth Selenide

The researchers made and tested samples of a compound in which sheets of bismuth and selenium, each just one atom thick, alternate to form five-layer units. The bonds between the units are weak, allowing the overall material to flex while retaining its durability. And as a topological insulator — a new state of quantum matter — the material conducts electricity only on its surface, while its interior remains insulating, an unexpected property with unknown potential for fundamental research and practical applications.

Since surface atoms dominate the structure of bismuth selenide, it is an exceptionally good electrical conductor — as good as gold. Unlike gold, however, bismuth selenide is transparent to infrared light, which we know as heat. While about half the solar energy that hits the Earth comes in the form of  infrared light, few of today’s solar cells are able to collect it. The transparent electrodes on the surfaces of most cells are either too fragile or not transparent or conducting enough. The new material could get around that problem and allow cells to harvest more of the sun’s spectrum of wavelengths.

A Commercial Future

The researchers’ experiments also showed that bismuth selenide does not degrade significantly in humid environments or when exposed to oxygen treatments that are common in manufacturing.

“In addition to being a scientific success,” Chen said, “this demonstration should alert engineers and companies that topological insulators can also be important commercially.”

Peng added, “Infrared light pulses carry phone calls and data through optical fiber networks, so bismuth selenide may be useful in communications devices. This material could also improve infrared sensors common in scientific equipment and aerospace systems.”

Peng and colleagues made the bismuth selenide samples and conducted the flexing, conductivity, and transparency tests in China. The researchers confirmed that the samples were topological insulators at the Stanford Synchrotron Radiation Lightsource’s Beam Line 5-4 at SLAC.

Theorists first proposed topological insulators in 2004, and experimentalists made the first examples, using mercury telluride at very low temperatures, two years later. Guided by theory, Chen, Shen and colleagues proved in 2009 that cheaper, more abundant, and easier-to-handle bismuth telluride and similar compounds containing antimony and selenium are topological insulators at room temperature. Also in 2009, Peng, Shen, and colleagues discovered important electrical conduction behavior in bismuth selenide nanoribbons.

Source:  SLAC National Accelerator Laboratory, Toplogical Insulator photo and video by Hailin Peng, Peking University

 
 
 
Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 

Don't want to miss a cleantech story? Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Advertisement
 

programs explore the ultimate structure and dynamics of matter and the properties of energy, space and time -- at the smallest and largest scales, in the fastest processes and at the highest energies -- through robust scientific programs, excellent accelerator-based user facilities and valuable partnerships. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science.

Comments

You May Also Like

Batteries

A polymer-based electrolyte made for batteries that keep working — and don’t catch fire — when heated to over 140 degrees F.

Grid

Room-temperature superconductors could transform everything from electrical grids to particle accelerators to computers — but before they can be realized, researchers need to better...

Clean Power

A new PV module makes electricity from thermal radiation. Imagine that.

Batteries

Cryo-EM snapshots of the solid-electrolyte interphase, or SEI, reveal its natural swollen state and offer a new approach to lithium-metal battery design. Originally published...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.