Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Power

New World Record for Tandem Polymer Solar Cell Efficiency

 

polymer solar cell research

Yang Yang, a professor of materials science and engineering at UCLA Engineering and principal investigator on the research.

“Scientists boosted the significance of tandem polymer solar cells by successfully testing cells with low-bandgap polymers that achieved certified conversion efficiencies of 8.62 ± 0.3% with respect to standard terrestrial reporting conditions,” the National Renewable Energy Laboratory (NREL) announced today.

“Further, after the researchers incorporated a new infrared-absorbing polymer material provided by Sumitomo Chemical of Japan into the device, the device’s architecture proved to be widely applicable and the power-conversion efficiency jumped to 10.6 percent — a new record,” UCLA adds.

This is the highest independently measured efficiency for a polymer solar cell.

NREL and UCLA researchers achieved the new record efficiency and have authored a report, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” published in the journal Nature Photonics on February 12.

“We have been doing research in tandem solar cells for a much shorter length of time than in the single-junction devices,” said Gang Li, a member of the research faculty at UCLA Engineering and a co-author of the paper. “For us to achieve such success in improving the efficiency in this short time period truly demonstrates the great potential of tandem solar cell technology.”

“Everything is done by a very low-cost wet-coating process,” Yang said. “As this process is compatible with current manufacturing, I anticipate this technology will become commercially viable in the near future.”

Yang is hoping for 15% efficiency in the next few years.

The record efficiency was achieved in a test at NREL’s Spectrolab X-25 solar simulator (aka the One-Sun Solar Simulator), a solar simulator with wide current and voltage ranges.

“Accurately measuring tandem cells is difficult. The NREL simulator provide unparalleled accuracy by precisely adjusting the spectrum, and did so in a fraction of the time that other simulators could do the job,” said NREL Principal Engineer Keith Emery. Each device junction must behave the same under the simulator spectrum as it would under the reference spectrum. It requires significant adjustment of the simulator spectrum, normally a very tedious process.

NREL’s One-Sun Solar Simulator was able to turn an ordeal that typically takes all day into a five-minute task. “We think it’s also more accurate because we can better adjust the spectrum,” Emery said.

Tandem Solar Cells & Polymer Solar Cells

Tandem solar cells are also known as multi-junction solar cells, a type of technology we’ve written about a number of times.

“Envision a double-decker bus,” said Yang Yang, a professor of materials science and engineering at UCLA Engineering and principal investigator on the research. “The bus can carry a certain number of passengers on one deck, but if you were to add a second deck, you could hold many more people for the same amount of space. That’s what we’ve done here with the tandem polymer solar cell.”

Tandem or multi-juntion solar cells have been advancing for years, but advancements in polymer solar cells have lagged a bit due to one specific handicap.

“Tandem solar cells by their design can harvest a broader spectrum of the sun’s rays than single solar cells,” NREL notes. “But polymer solar cells have lagged because it’s been difficult finding a suitable low-bandgap polymer.”

Achieving the Record Efficiency

I’ll be honest, the technicalities here are beyond my expertise, as I’m sure they are for 99.99% of the population and most of our readers, but if you like reading about such scientific technicalities, here are more details (summarized, albeit) from NREL:

In sophisticated tests, the researchers were able to demonstrate highly efficient single and tandem polymer solar cells featuring a low-bandgap conjugated polymer (PBDTT-DPP: bandgap, 1.44 eV). When they tested a single-layer device with the polymer it converted the sun’s rays into electricity at an efficiency of about 6%. When the polymer was applied to tandem solar cells, the power conversion efficiency reached 8.62%.

The UCLA group recently improved on this result by incorporating a new infrared-absorbing polymer from Sumitomo Chemical in Japan. NREL measured the power conversion efficiency at 10.6+/-0.3% under standard terrestrial reporting conditions.

Stacking layers of different materials in a solar cell means multiple bandgaps, each of which captures a different part of the solar spectrum. The challenge is to achieve a high current by efficiently using the low-energy portion of the solar spectrum, and achieving a small energy bandgap – less than 1.5 eV.

Support for the study came from the National Science Foundation, the U.S Air Force Office of Scientific Research, the U.S. Office of Naval Research, and the U.S. Department of Energy.

Sources: NREL & UCLA

 
I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
 

Written By

Zach is tryin' to help society help itself one word at a time. He spends most of his time here on CleanTechnica as its director, chief editor, and CEO. Zach is recognized globally as an electric vehicle, solar energy, and energy storage expert. He has presented about cleantech at conferences in India, the UAE, Ukraine, Poland, Germany, the Netherlands, the USA, Canada, and Curaçao. Zach has long-term investments in Tesla [TSLA], NIO [NIO], Xpeng [XPEV], Ford [F], ChargePoint [CHPT], Amazon [AMZN], Piedmont Lithium [PLL], Lithium Americas [LAC], Albemarle Corporation [ALB], Nouveau Monde Graphite [NMGRF], Talon Metals [TLOFF], Arclight Clean Transition Corp [ACTC], and Starbucks [SBUX]. But he does not offer (explicitly or implicitly) investment advice of any sort.

Comments

You May Also Like

Autonomous Vehicles

NREL Inaugurates New Lab, Advancing Pioneering Research Efforts Into the Real World To Improve Mobility Efficiency and Equity Billions of devices around the world...

Clean Power

Lesser Known Than Some of Its Renewable Energy Cousins, Geothermal Energy Is Now on the Rise Thanks to Its Ability To Provide 24/7 Power,...

Clean Power

In October 2021, the city of Frankfort, Kentucky, set a very accelerated and ambitious clean energy goal: to supply 100% clean, renewable electricity to...

Clean Power

Unexpected Crystalline Structure Explains Mechanism of Long-Used Solar Cell Treatment and Hints That Further Materials Discoveries Await For more than three decades, photovoltaic researchers...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.

Advertisement