Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Transport

The Car of the Future Will Eat Its Own Exhaust

GM and Purdue team up to create thermoelectric energy from car exhaustGM, not content to rest on the laurels of its highly rated new Chevy Volt electric/gasoline car, is working with researchers at Purdue University to develop thermoelectric generators that can harvest the waste heat from a car’s exhaust and turn it into electricity. The initial goal is to reduce fuel consumption by 5%, and once some kinks are worked out a savings of 10% is possible.

Thermoelectric Generators and Car Exhaust

The new generator would save gas by using scavenged energy to charge the battery and keep the car’s electrical systems running. The researchers have developed a prototype that sits behind the catalytic converter. A more efficient design would be to fit the generator inside the converter, but the device is not yet engineered to withstand the high temperatures within catalytic converters.

Thermoelectric Generators – How They Work

The principle behind thermoelectric generators is simple enough: the devices are made of materials that generate electricity through a difference in temperatures, a phenomenon known as the Seebeck effect. The car exhaust will heat the side of the thermoelectric generator that faces the hot gasses, while the other side remains relatively cool. Purdue research team leader Xianfan Xu explains that the trick is to keep the heat from flowing too rapidly from one side to the other, while grabbing the maximum amount of heat from the exhaust.

A Hearty Stew of Thermoelectric Materials

At GM, researchers are focusing on generators made from the crystalline mineral skutterudite, which can contain cobalt, arsenide, nickel or iron. To achieve the desired effect, skutterudite needs to be mixed with lanthanum, cesium, neodymium, or other rare-earth elements, but researchers are exploring less expensive materials such as mischmetal, a naturally occurring alloy that is commonly used as a flint in lighters.

Image: Purdue doctoral student works with a laser to study thermoelectric generators, by Mark Simons courtesy of Purdue University.

h/t: Energy Harvesting Journal.

 
Check out our brand new E-Bike Guide. If you're curious about electric bikes, this is the best place to start your e-mobility journey!
 
 
Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 
Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Advertisement
 
Written By

Tina specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.

Comments

You May Also Like

Autonomous Vehicles

Earlier this month, we missed a cool milestone in the development of autonomous vehicles. GM’s autonomous vehicle division, Cruise, recently got California’s first permit...

Clean Transport

In a recent video at GM’s YouTube channel, Gerald Johnson, the Executive VP for Global Manufacturing and Sustainability, gives us a tour of GM’s...

Cars

General Motors is adding plug-and-charge technology for its electric car drivers starting with the EVgo charging network.

Cars

GM aims to make EV charging easier than ever before, and "daisy-chain" charging might be in the works.

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.