Energy Efficiency UCLA researchers develop graphene gates to create fastest transistor

Published on September 4th, 2010 | by Tina Casey


Graphene Gate Opens the Door to Smaller, Faster, Less Toxic Electronics

September 4th, 2010 by  

UCLA researchers develop graphene gates to create fastest transistorA team of researchers at UCLA has developed a new way to make super-fast graphene transistors that are comparable to transistors that use more expensive (and toxic) materials. If successful commercially, the new graphene based technology could play a key role in energy conservation and waste reduction related to the rising tide of electronic devices in the world.


Like it or not, electronics are here to stay — and to grow into new markets as the developing world catches up with industrialized countries.  By reducing their size, making them more energy efficient, and cutting or outright eliminating the use of hazardous substances in their manufacture, it is possible to engineer a more sustainable path to a global electronic future.

Graphene and Sustainable Electronics

Graphene, a substance discovered just a few years ago, has emerged as a sustainability superhero due to its high strength and unique properties, combined with its incredibly compact size. Graphene is a form of carbon that occurs in sheets just one atom thick. Graphene could be an ideal platform for reducing the size of electronic devices, but of course there’s a catch — the material is very difficult to manipulate on an atomic scale. Researchers are coming up with various ways to deal with that. For example, a team at the University of South Florida has developed graphene nanowires, formed by disrupting the structure of graphene sheets, and a team at the University of Illinois has found that nanodroplets of water can be used as “chaperones” to manipulate graphene into shapes.

High Speed Transistors from Graphene

The UCLA team developed a new process for making graphene nanowire gates (the “switch” in transistors) that align themselves precisely, without an assist. The ability to self-align is critical in modern transistors due to their small size. UCLA’s process was a breakthrough because unlike previous attempts, the results were free of defects that would otherwise interfere with performance. The team was able to demonstrate a speed comparable to conventional high speed transistors, such as those made with gallium arsenide and indium phosphide, both of which have toxic properties that could complicate disposal and recycling operations.

Image: Gate by Jean Pichot on

Check out our new 93-page EV report, based on over 2,000 surveys collected from EV drivers in 49 of 50 US states, 26 European countries, and 9 Canadian provinces.

Tags: , , ,

About the Author

specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Tina’s articles are reposted frequently on Reuters, Scientific American, and many other sites. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.

Back to Top ↑