CleanTechnica is the #1 cleantech-focused
website
 in the world. Subscribe today!


Clean Power Argonne researchers find key to solar cell efficiency

Published on May 7th, 2013 | by Tina Casey

5

Hi-Tech Spit And Polish Improves Solar Cell Efficiency

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

May 7th, 2013 by
 
Along with the well-known enemies of solar cell efficiency such as dust and pollen, a known unknown recently popped up when researchers began to realize that traces of residue left over from the manufacturing process can reduce the efficiency of solar cells, long before they are exposed to the harsh realities of the outdoor environment. Well, it looks like we can take the “unknown” out of the equation, as researchers from Argonne National Laboratory have just announced that they have nailed the culprit.

Argonne researchers find key to solar cell efficiency

Wash Me Now by badjonni.

Solar Power Cheaper Than Fossil Fuels

The residue issue involves organic photovoltaics (OPVs), a next generation class of solar cells that can be made from cheap, abundant materials. In contrast to silicon, which is a metalloid, OPVs are based on organic polymers, aka plastic.

Although OPVs are less efficient at converting sunlight than silicon, the low cost of the materials partly offsets that factor.

Another offsetting factor is the manufacturing process for OPVs, which is far cheaper than fabricating silicon solar cells. Generally, OPVs can be applied to any flexible, lightweight substrate using standard, high-volume manufacturing processes such as spray-painting or roll-to-roll fabrication.

A third factor is the range of applications that OPVs can have in terms of building integrated solar power, including transparent solar cells that can replace window glass.

Despite all these advantages, the relatively low conversion efficiency of OPVs is still a stumbling block, and in order to keep costs trending downward researchers need to pack greater efficiency into a smaller space, making a solution to the residue issue all the more imperative.

A Key To Solar Cell Efficiency

One step in the right direction occurred when researchers realized that there was actually an OPV residue issue; namely, that nanoscale bits of the catalyst used in the manufacturing process (typically the metal palladium) were probably left in the finished product.

That would reduce efficiency by trapping some of the electric charge generated by the solar cell, and to make matters worse, it also creates a note of uncertainty in commercial solar cell performance, since the amount of residue would be expected to vary from one batch to another.

That made identifying the residue all the more imperative, but for a while researchers were at a loss to find equipment delicate and detailed enough to do the job.

The breakthrough came when a research team guided by Seth Darling of Argonne National Laboratory hit upon the idea of setting the lab’s Advanced Photon Source (APS) loose on the problem.

APS, which has been undergoing an eight-year upgrade project, is billed as the provider of the “brightest storage ring-generated x-ray beams in the Western Hemisphere.”

As described by Argonne writer Jared Sagoff, Darling’s team used high-intensity X-rays from APS to create a fluorescent effect, similar to the way that crime scene investigators use fluorescent equipment to sweep a dark room for mystery liquids and other substances.


With the evidence gleaned from APS, the team identified and quantified traces of a catalyst used during the manufacturing process (that would be the aforementioned metal, palladium).

We Built This!

This discovery is no laboratory hothouse flower. According to Sagoff, the photovoltaic industry is already beginning to make chemical and process adjustments to help reduce residue, in advance of new developments that could prevent it altogether.

So, fellow taxpayers, let’s all pat ourselves on the back for funding yet another shared public research facility that would be impossible to build with private sector dollars, but which directly benefits U.S. companies and improves their prospects for competing in global markets.

Follow me on Google+ and Twitter.

Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.

Print Friendly

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

Tags: , , , , , , , , ,


About the Author

Tina Casey specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Tina’s articles are reposted frequently on Reuters, Scientific American, and many other sites. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.



  • Bob

    I see nothing different in new technology of the silicon wafer solar cell then the old passed solar cell produced 40 years ago based upon the same output per square meter. Same AMP and voltage produced nothing different.

    No improvement in light level compared to the old cells in comparison.

    • Bob_Wallace

      Take a look at 1973 vs. 2013 cell efficiency. You may find there what you missed.

  • Jefe

    Neat technology ! OPV lends for some great research, just not much in industry and actually getting deployed because the efficiency vs. cost advantage just isn’t there and won’t be.

  • More Please

    I’d like to read this on Ars Technica where they wouldn’t stop short of going into the technical details as to how the xray fluorescence equipment worked, what the processes were that deposited the metal and what type of tweeking they thought they could do to mitigate the issue.

  • http://www.facebook.com/profile.php?id=100002397356341 Facebook User

    Thanks Tina, for the article. There is a lot of innovation in surface enhancing techniques for solar panels. However a techno-commercial viability is yet to be achieved for most. Also some other base information can be utilized for enhancing power of solar panels. With articles like

    http://www.sunipod.com/blog/maximizing-power-of-solar-panels-in-solar-power-generation/

    we are trying to educate providers and users of CaptiveSolar Solutions on improving overall system output, and with new information like from your article one hopes that the entire industry will move forward.

Back to Top ↑