Liquid Solar Cells that Can be Painted onto Surfaces

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

 
New research out of the University of Southern California (USC) advances the development of “cheap, stable solar cells made from nanocrystals so small they can exist as a liquid ink and be painted or printed onto clear surfaces.” This is exciting stuff, in my opinion. Here’s more from USC:

A USC scientist treats a glass slide with nanocrystals. Photo by Dietmar Quistorf.

The solar nanocrystals are about four nanometers in size – meaning one could fit more than 250 billion on the head of a pin – and float them in a liquid solution, so “like you print a newspaper, you can print solar cells,” said Richard L. Brutchey, assistant professor of chemistry in USC Dornsife.

Brutchey and USC postdoctoral researcher David H. Webber developed a new surface coating for the nanocrystals, which are made of the semiconductor cadmium selenide. Their research is featured as a “hot article” in Dalton Transactions, an international journal for inorganic chemistry.

Liquid nanocrystal solar cells are cheaper to fabricate than available single-crystal silicon wafer solar cells but are not nearly as efficient at converting sunlight to electricity. Brutchey and Webber solved one of the key problems of liquid solar cells: how to create a stable liquid that also conducts electricity.

In the past, organic ligand molecules were attached to the nanocrystals to keep them stable and to prevent them from sticking together. These molecules also insulated the crystals, making the whole thing terrible at conducting electricity.

“That has been a real challenge in this field,” Brutchey said.

Brutchey and Webber discovered a synthetic ligand that not only works well at stabilizing nanocrystals but actually builds tiny bridges connecting the nanocrystals to help transmit current.

With a relatively low-temperature process, the researchers’ method also allows for the possibility that solar cells can be printed onto plastic instead of glass without any issues with melting, resulting in a flexible solar panel that can be shaped to fit anywhere.

As they continue their research, Brutchey said he plans to work on nanocrystals built from materials other than cadmium, which is restricted in commercial applications due to toxicity.

“While the commercialization of this technology is still years away, we see a clear path forward toward integrating this into the next generation of solar cell technologies,” Brutchey said.

The National Science Foundation and USC Dornsife funded the research.


Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Latest CleanTechnica TV Video


Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

Zachary Shahan

Zach is tryin' to help society help itself one word at a time. He spends most of his time here on CleanTechnica as its director, chief editor, and CEO. Zach is recognized globally as an electric vehicle, solar energy, and energy storage expert. He has presented about cleantech at conferences in India, the UAE, Ukraine, Poland, Germany, the Netherlands, the USA, Canada, and Curaçao. Zach has long-term investments in Tesla [TSLA], NIO [NIO], Xpeng [XPEV], Ford [F], ChargePoint [CHPT], Amazon [AMZN], Piedmont Lithium [PLL], Lithium Americas [LAC], Albemarle Corporation [ALB], Nouveau Monde Graphite [NMGRF], Talon Metals [TLOFF], Arclight Clean Transition Corp [ACTC], and Starbucks [SBUX]. But he does not offer (explicitly or implicitly) investment advice of any sort.

Zachary Shahan has 7324 posts and counting. See all posts by Zachary Shahan