Mediocrity Is The Enemy Of The Solution

By Claudia Kemfert and Mark Z. Jacobson

On Friday, December 11, 2020, European Union leaders agreed to reduce greenhouse gas emissions 55% below 1990 levels by 2030. On Saturday, December 12, President-Elect Joe Biden promised that the US would rejoin the Paris Accord on Wednesday, January 20, the first day of his new administration. The agreement calls for the United States to reduce its carbon emissions 25% below 2005 levels by 2025. Also on December 12, President Xi Jinping of China told a virtual climate summit that China would reduce its carbon emissions 65% below 2005 levels by 2030, with renewables accounting for 25% of energy consumption by then.

Are any of these promises enough? Do these and other leaders have a clear understanding of what the problems are and the technologies we need to eliminate emissions? We think the answer to both questions is no.

First, what are the main problems caused by energy? In addition to global warming, they are air pollution mortality and morbidity and energy insecurity. According to the World Health Organization, seven million people die and hundreds of millions more become ill each year from worldwide air pollution. In addition, our current energy infrastructure gives rise to at least four types of energy insecurity: that due to diminishing availability of fossil fuels and uranium; that due to the reliance on centralized power plants and refineries; that due to reliance on energy from outside a country’s borders; and that due to fuels that have mining, pollution, waste, meltdown, and weapons proliferation risk.

Since all these problems are caused primarily by our current energy infrastructure, we believe changing our energy to rely entirely on clean, renewable energy and storage will solve all three problems. Clean, renewable energy includes onshore and offshore wind, solar photovoltaics on rooftops and in power plants, concentrated solar power, solar thermal for heat, geothermal electricity and heat, existing hydroelectric power, tidal power, and wave power. These types of electricity and heat are all provided by wind, water, and solar (WWS) sources. Storage includes electricity, heat, cold, and environmentally-friendly, sustainable hydrogen storage. We and other groups have developed plans for almost all countries of the world to transition to 100% WWS and storage at low cost.

How is this solution at odds with those of world leaders? In two main ways. First, most scientists believe that if we want to avoid 1.5 oC global warming since the early 1900s and its catastrophic consequences, the only practical way is to eliminate 80% of energy and non-energy emissions by no later than 2030 and 100% by or before 2050. Neither the Paris Accord nor the other proposals listed at the beginning are nearly so aggressive enough to accomplish this goal. Second, a careful look at the policies of world leaders indicate that, while they include WWS and storage, they also include either natural gas, carbon capture, direct air capture, biofuels, and/or nuclear power. Thus, these leaders propose an “all-of-the-above” policy, where they will try everything that special interests claim help solve the climate problem but really can’t. This policy is often disguised under the term,”climate neutrality.” The term sounds good and creates political majorities, but it also extends technological path dependencies on fossil and nuclear business models. Even worse, the “all-of-the-above-climate neutrality” policy does not address air pollution or energy insecurity at all; instead, it worsens these problems.

As famously stated once, mediocrity is the enemy of greatness. In this case, mediocrity is the enemy of the solution.

So, why does “all-of-the-above” not work?

First, natural gas results in enormous carbon dioxide, methane, and air pollution emissions, both during its mining and use. In addition, it is a limited resource, is used significantly in centralized power plants, is often mined then shipped across country boundaries, and has mining and water pollution risks. As a result, natural gas damages climate, human health via air pollution, and energy security, so it fails to solve any problem. A current example from Europe illustrates the absurdity of current policy related to natural gas. Europe and Germany are currently constructing the Northstream II natural gas pipeline from Russia to Germany. This contradicts all agreed objectives and is economically and ecologically nonsensical. However, it was agreed upon as a concession to special interest groups within the framework of “climate neutrality.” 

Second, carbon capture (removing carbon dioxide from smoke stacks) and direct air capture (removing carbon dioxide from the air) fail on their face on multiple levels. First, they reduce absolutely no air pollution. Instead, because they require energy to run, they require more mining and burning of natural gas or coal to provide that energy, thus they increase both mining and air pollution. Since they increase rather than decrease the use of fossil fuels, they hasten all the energy security risks of fossil fuels. Because they are inefficient and costly at reducing carbon from smokestacks or the air, the money they use to do that could more easily be used to build a wind turbine or solar plant to replace a coal or gas plant, thus reduce more carbon from the air while simultaneously reducing air pollution and mining. Finally, what happens to the carbon that is captured? Well, today, most is piped to an oil field to make the oil less dense to get it out of the ground more easily. Half the captured carbon is lost back to the air through this process. There is no proof that the rest of the carbon stays in the ground. Recently, EU politicians have been raving about “blue hydrogen”, in which the CO2 produced during the production of hydrogen using natural gas will be captured and stored. Such technologies are often promised by companies in the oil and gas industry as “the miracle weapon for achieving climate neutrality,” for which they request generous state subsidies.

Third, biofuels and biomass are billed as climate saviors. Biofuels are burned as a replacement for gasoline or diesel in vehicles. Biomass is burned as a replacement for coal or natural gas to produce electricity. Because biofuels and biomass are both burned, they create similar levels of air pollution as the fossil fuels that they replace. The land use required for biofuels is enormous. Photosynthesis is only 1% efficient. Solar panels are 20% efficient. Thus, a solar panel needs 1/20th the land as a biofuel to produce the same energy. On top of that, an electric car uses 1/4th the energy as an internal-combustion engine car to go the same distance. Thus, a battery-electric car running on solar energy uses 1/80th the land as an ethanol-fueled car. Further, biofuels require huge amounts of energy, fertilizers, and water to process and transport. Some studies find that the carbon consumed in producing a biofuel is similar to that of the gasoline or diesel it replaces. Similarly, whereas several forms of biomass (e.g., forestry residues) produce less carbon than coal or natural gas for electricity generation, others (e.g., municipal solid waste) produce much more. Even the forms of biomass that produce the least carbon still emit many times more carbon than wind energy. In fact, wind and solar reduce orders of magnitude more air pollution while using less land and reducing much more carbon than biofuels or biomass.

Fourth, new nuclear power has zero chance of helping to solve the urgent climate, pollution, and energy security problems described. New nuclear plants take 10 to 19 years between planning and operation. This includes the times to obtain a construction site, a construction permit, an operating permit, financing, and insurance; the time between construction permit approval and issue; and the construction time. This compares with planning-to-operation times of new wind or utility PV of 1 to 3 years. Thus, with an average new nuclear time of 15 years, not a single new reactor planned today could be built by 2030, when we need 80 percent of all emissions stopped. This applies to proposed Small Modular Reactors, the first of which is estimated to be commercially available only by 2030, and this will likely be delayed as well.

On top of that, new nuclear plants (including Small Modular Reactors) cost around 5 times that of a new onshore wind or utility PV farm. Thus, we for the same money, we would obtain one-fifth the energy with nuclear and 7 to 18 years later. 

Moreover, nuclear has multiple energy security problems. 1.5% of all nuclear reactors built to date have melted down; multiple countries have developed nuclear weapons secretly under the guise of civilian nuclear energy programs; nuclear radioactive waste must by stored over 250,000 years and has exposure risks; and nuclear has underground uranium mining risks for lung cancer. WWS technologies do not have any of these risks. Finally, nuclear is not carbon free. It results in significant carbon emissions during the 10 to 19 years between planning and operation; it requires significant energy for refining uranium and building the plant over many years, and it emits direct heat and water vapor, a greenhouse gas, to the air during its operation. Overall, it emits 9 to 37 times the carbon-equivalent emissions per unit energy produced as a new wind turbine.

In sum, an all-of-the-above policy is a mediocre policy that will not help solve the global warming, air pollution, or energy security problems we face because it will siphon scarce resources needed for the real solution to these problems. It will also siphon precious time, which we have very little of.

What we need is a rapid transition to 100% clean, renewable WWS energy and storage for everything while also addressing non-energy emissions. This transition involves electrification of most everything – vehicles; building heating and cooking; industrial processes – and providing the electricity entirely with WWS. We estimate that, due to the efficiency of electricity over combustion and other factors, such electrification will reduce worldwide energy needs about 57%. Although overall energy requirements will decline, electricity requirements will be about 90% greater than today. Thus, more energy will be electricity. Electricity is the new oil.

Because we will use much less overall energy and because the cost per unit energy is lower with WWS, annual worldwide costs of powering the world for all purposes will be about 61% lower – $6.8 trillion per year rather than $17.7 trillion per year – with WWS in 2050. Because WWS eliminates almost 7 million deaths annually and emissions associated with global warming, it also reduces social costs (energy plus health plus climate costs) worldwide by an even larger 91 percent (from $76.1 to $6.8 trillion per year). 

The upfront capital needed for this transition worldwide (which is spread over 30 years), is about $73 trillion. However, this cost pays for itself in about seven years due to the $11 trillion in annual energy cost savings due to WWS over fossil fuels. In the United States, the capital cost of this Green New Deal is $7.8 trillion. In Europe, it is $6.2 trillion. In China, it is above $16 trillion.

WWS creates 28.6 million more long-term, full-time jobs than lost worldwide, including 3.1 million in the United States, 2.9 million in Europe, and over 8.5 million in China. It needs only 0.65% of the world’s land, of which two-thirds is space between wind turbines that can be used for multiple purposes.

Thus, we urge world leaders to seek a real solution, not mediocrity, and to stop letting fossil-nuclear business models continue under the guise of “climate neutrality” or a different name. We are at a turning point. The decade of avoiding climate change and irreversible climate protection is beginning. But only without alternative facts and smoke screens, only with scientific facts. There are only advantages to a rapid transition to real clean, renewable energy and storage.

Claudia Kemfert
Prof. Dr. of Energy, Transportation, and Environment
German Institute of Economic Research (DIW, Berlin)
ckemfert@diw.de 

Mark Z. Jacobson
Professor of Civil and Environmental Engineering
Stanford University
jacobson@stanford.edu


Sources:

  1. EU leaders agree on 55% emissions reduction target, but activist groups warn it is not enough
    Make the European Green Deal Real– Combining Climate Neutrality and Economic Recovery
  2. Lessons from Modeling 100% Renewable Scenarios Using GENeSYS-MOD
  3. Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe
  4. Joe Biden on Twitter: “Under a Biden-Harris Administration, we will rejoin the Paris Agreement on day one and lead the world in the fight against climate change. https://t.co/dHSsXRk35h” / Twitter
  5. https://twitter.com/JoeBiden/status/1337850207933968389
  6. China, India stress climate commitments at global summit
  7. Air pollution
  8. 100% Wind, Water, and Solar (WWS) All-Sector Energy Roadmaps for Countries, States, Cities, and Towns
  9. The health and climate impacts of carbon capture and direct air capture
  10. 100% Clean, Renewable Energy and Storage for Everything
  11. 100% Renewable Electricity Worldwide is Feasible and More Cost-Effective than the Existing System
Chip in a few dollars a month to help support independent cleantech coverage that helps to accelerate the cleantech revolution!
Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Sign up for our daily newsletter for 15 new cleantech stories a day. Or sign up for our weekly one if daily is too frequent.
Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

CleanTechnica's Comment Policy


Mark Z. Jacobson

Mark Z. Jacobson is Director of the Atmosphere/Energy Program and Professor of Civil and Environmental Engineering at Stanford University. He is also a Senior Fellow of the Woods Institute for the Environment and of the Precourt Institute for Energy. He received a B.S. in Civil Engineering, an A.B. in Economics, and an M.S. in Environmental Engineering from Stanford in 1988. He received an M.S. and PhD in Atmospheric Sciences in 1991 and 1994, respectively, from UCLA and joined the faculty at Stanford in 1994. He has published two textbooks of two editions each and over 155 peer-reviewed journal articles. He received the 2005 AMS Henry G. Houghton Award and the 2013 AGU Ascent Award for his work on black carbon climate impacts and the 2013 Global Green Policy Design Award for developing state and country energy plans. In 2015, he received a Cozzarelli Prize from the Proceedings of the National Academy of Sciences for his work on the grid integration of 100% wind, water and solar energy systems. He has served on an advisory committee to the U.S. Secretary of Energy, appeared in a TED talk, appeared on the David Letterman Show to discuss converting the world to clean energy, and cofounded The Solutions Project (www.thesolutionsproject.org).

Mark Z. Jacobson has 5 posts and counting. See all posts by Mark Z. Jacobson