Affordable Flow Battery Technology Reportedly Being Developed By Vinazene


Support CleanTechnica's work through a Substack subscription or on Stripe.
Or support our Kickstarter campaign!

An “affordable” flow battery technology is currently under development by researchers at Ann Arbor–based Vinazene Inc, in partnership with Grand Valley State University’s Michigan Alternative and Renewable Energy Center and its Chemistry Department.

The new project — which is funded by a DOE Phase II Small Business Innovation Research grant — is based around the use of proprietary, high-capacity organic electrolytes. The use of these organic electrolytes, rather than relatively expensive metals like vanadium, is what will reportedly allow for greater “affordability” — to date, the barrier to wide-scale use of flow battery technologies has been their relatively high costs.

image

Another purported advantage of the use of these proprietary organic electrolytes is the ability to specifically tailor the compounds used for higher solubility (amongst other traits). The Vinazene battery will reportedly have a higher energy density than the more well known vanadium-based systems, owing to this higher solubility.

Based on Vinazene’s website, the researchers involved seem pretty bullish on the technology — but then they often do, don’t they? Still, it sounds like there’s potential there. Perhaps something will come of it.

The researchers mention possible uses in remote military. surveillance, and/or telecommunication sites. Other potential uses include those in greenhouse farming and various types of industrial production facilities.


 

As far as what comes next, here it is in the company’s words:

In our Phase II research, we will optimize the novel organic active materials in our battery. We will construct prototypes to demonstrate the effectiveness of our design, at two levels, a 4 watt model to test active material and efficiency, and a 40 watt model to verify cycle life and storage life. The 40 watt device will require scale-up of our active materials which will be done by a toll manufacturing facility under Vinazene supervision. The data from these prototypes will be input into a computer simulation for design of kilowatt scale device. 

Our prototype and modeling will show customers and investors that our uniquely high energy density and low cost materials will provide valuable energy storage at a lower price than currently available technology.

Successfully entering the commercial energy storage market with a new technology is of course easier said than done. But we’ll see.

Image Credit: Vinazene Inc

Support CleanTechnica via Kickstarter


Sign up for CleanTechnica's Weekly Substack for Zach and Scott's in-depth analyses and high level summaries, sign up for our daily newsletter, and follow us on Google News!
Advertisement
 
Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Sign up for our daily newsletter for 15 new cleantech stories a day. Or sign up for our weekly one on top stories of the week if daily is too frequent.

CleanTechnica uses affiliate links. See our policy here.

CleanTechnica's Comment Policy


James Ayre

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

James Ayre has 4830 posts and counting. See all posts by James Ayre