CleanTechnica is the #1 cleantech-focused
website
 in the world. Subscribe today!


Research A simulation of the illuminance of an alleyway at noon at two different times of year, autumn (top) and winter (bottom). The new light-directing panel increases the amount of light that reaches the alleyway, as indicated by the higher amounts of red and yellow in the right-hand images (“with panel”) compared to the left-hand images (“without panel”).
Image Credit: Optics Express

Published on April 21st, 2014 | by James Ayre

0

Redirecting Sunlight Into Dark Urban Alleys With Translucent Panels

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

April 21st, 2014 by
 
Hundreds of millions of people throughout the world live in crowded urban areas that don’t receive much sunlight — largely due to the presence of tall light-blocking buildings. As the global population continues to climb (that’s the prediction) over the coming decades, this problem is expected to worsen considerably.

So, how to approach this problem? Researchers from Ain Shams University in Egypt think that they have an effective solution — a new, corrugated, translucent panel that can be mounted on rooftops to redirect sunlight onto the narrow streets and alleyways below.

A simulation of the illuminance of an alleyway at noon at two different times of year, autumn (top) and winter (bottom). The new light-directing panel increases the amount of light that reaches the alleyway, as indicated by the higher amounts of red and yellow in the right-hand images (“with panel”) compared to the left-hand images (“without panel”). Image Credit: Optics Express

The new panels can simply be mounted on roofs and hung over the edges at an angle, this the redirects the sunlight to the relatively dark streets below.

“We expect the device to provide illumination to perform everyday tasks, and improve the quality of light and health conditions in dark areas,” stated Amr Safwat, a professor of electronics and communications engineering at Ain Shams University in Cairo, Egypt. “These dimly lit areas specifically include narrow streets in developing countries, but the new panel could be used in any country as a greener, cheaper, and more pleasant alternative to fluorescent and other artificial light.”

There are of course already window-like devices can redirect light commercially available, but these aren’t designed for narrow streets — being more suited to tasks such as brightening a room or reducing glare. The researchers set out to address the lack of a specialized design for this purpose — a simple way to redistribute natural light without the need for a tracking device that follows the rising and setting sun.


The press release from the Optical Society provides more:

What they came up with is a panel made of polymethyl methacrylate (PMMA), the same acrylic plastic of which Plexiglas is made. The bottom of the panel is smooth while the top is covered in ridges that are based on a sine wave, the mathematical function that describes everything from light to pendulums. The researchers used computer simulations to find the size and shape of the grooves that distribute the most amount of sunlight in a wide range of sun positions all year round, whether it’s high or low in the sky. A sine-wave pattern is also easy to manufacture.

Using simulations of sunlight shining on an alleyway, the researchers found that their panels increased illumination by 200% and 400% in autumn and winter, respectively, when sunlight is most limited. They also tested a small prototype over a 0.4-meter-by-0.4-meter shaft that is 1.2-meters deep and found that it lit up the area as designed.

The researchers are now planning to construct a full-scale model (10 times bigger than previous models) in order to verify their calculations, and perform real-world testing.

Estimates are that a commercialized version of the panel will end up selling for around $70–100.

The new research was just detailed in a paper published in the journal Energy Express, a supplement of The Optical Society’s open-access journal Optics Express.

Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.

Print Friendly

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

Tags: , , ,


About the Author

's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy. You can follow his work on Google+.



Back to Top ↑