CleanTechnica is the #1 cleantech-focused
website
 in the world. Subscribe today!


Energy Efficiency Air Conditioners. 

Image via  RonFullHD/Shutterstock.

Published on March 10th, 2014 | by Guest Contributor

3

Hospital Energy Managers: Six Steps For Major Energy Savings Via HVAC & Central Plant Peak Performance

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

March 10th, 2014 by  

By Manny Rosendo, Co-Founder & CEO of Entic

Take a look below at how Broward Health saved $311,000 in annual energy costs with advanced analytics and data science.

Image via RonFullHD/Shutterstock.

According to the Environmental Protection Agency (EPA), healthcare organizations spend nearly $8.8 billion annually on energy to meet patient needs. In a typical hospital, the biggest consumer of electrical power is the HVAC system, accounting for as much as 42% of total usage. The HVAC system and chiller plant alone can push a hospital’s electric bills close to over a million dollars a year.

With the right peak performance strategy and technologies, it is possible to cut HVAC and central plant energy use by as much as 40%. As case in point, one of the nation’s largest public healthcare systems, Broward Health Medical Center (BHMC), registered savings of $311,000 in just one year, including more than $30,000 in a single month. This was possible after implementing advanced analytics and data science, providing visibility and transparency into the performance and service of its HVAC system and 6,000-ton chiller plant.

For a hospital, or any commercial building, the chiller plant is of critical importance. It is the circulatory system of the HVAC, responsible for the continuous flow of air. Yet the Department of Energy states that 95% of all chiller plants are inefficient. Does this mean that all of these plants are broken? No, however it does indicate that the plants at your facility are almost certain to be wasting energy and money, and you may not even know how much.

Because every hospital is unique, understanding your HVAC as an integrated eco-system is important for achieving maximum efficiencies. Based on our experiences with major medical facilities, we have compiled six steps your hospital can take now to generate immediate and long-term significant energy cost savings.

Achieving HVAC and Central Plant Peak Performance

STEP ONE: Evaluate your system’s current state

Everything begins with the documentation of the equipment and correlating specs. As you know, the efficiency of the chiller depends on the amount of energy or electrical current consumed for cooling, measured in kilowatt per ton (kW/ton). The lower the kW/ton rating, the more efficient the system. While not everyone is using this criteria, in our experience it has proven to be the cleanest metric for measuring optimization, regardless of the type of equipment or power source.

Many management teams look at British Thermal Units (BTUs)/sf, or the amount of BTUs required to heat a space per square foot, as a key metric. However, we have found that if the system is not operating at peak efficiency, this metric fails to provide enough detail to help determine the problems. When documenting any current issues or pain points with your system, take time to extend your thinking beyond the symptoms to what is causing them.

STEP TWO: Know what you’re trying to achieve

Once you have a clear picture of your system’s current performance, it’s time to align common objectives with those of other stakeholders to target realistic goals. You’ll want to ensure that everyone involved in decision-making, including operations, finance and the executive suite, is in agreement. You are looking for immediate and appropriate feedback to help you gain control of your building and ensure higher comfort levels. The focus is on controlling and lowering expenses.

It’s easier to prioritize work orders and fixes if you use a software solution that provides a concise roadmap for ECM (Energy Conservation Measures). There are some advanced solutions available, and the right technology tools can enable better articulation of opportunities with payback analysis, along with clear tracking and measurement of results.

Solutions that afford around-the-clock monitoring and interactive dashboards provide building engineers and facilities managers with greater control and visibility over their sites. This helps improve troubleshooting, and leads to better dialogue with your vendors and sub-contractors.

Lowering costs must also be balanced, or coupled, with maintaining comfort consistently throughout the building. Reducing energy consumption should be considered across a timeframe, not just one point in time. An investment that keeps your hand on the heartbeat of the plant and the hospital’s energy usage, letting you know instantly how the system is running, is well worth the expense as it can result in up to 40% energy cost savings.

BHMC was able to identify and correct HVAC performance gaps almost immediately. With 85 percent of their building under automation, they have attained superior energy efficiency with a 26-percent reduction in energy use and an enhanced kW/ton ratio of .85.

STEP THREE: Understand the data and feedback loop

Chances are, you already have a Building Automation System (BAS) or Building Management System (BMS) running your HVAC. While these systems have been around for years, they may not be able to give you the advanced analytics needed to holistically optimize your HVAC plant.

A BAS isn’t built for analytics – it’s for sequences, and sequences are static and theoretical. For example, because of how you think your building is going to operate, you create a sequence, and then it turns out this isn’t how it actually operates. That’s why you need advanced analytics to show how the system is really operating, and then you can tweak your building automation sequences to better optimize, thus establishing a smart feedback loop.

For a more precise understanding of your data and feedback, ask a few key questions:

• What is the most appropriate data for our goals, and why it is important?
• To capture the feedback we want, how often should the data be collected?
• Are all sensors and meters calibrated and working properly?

STEP FOUR: Present data as an action plan

Sure, information can be great to have, but it is only valuable if it can be acted on for results. Because it’s tempting and easy to overload on information, we advise following a sequential approach: Plan – Do – Check – Act.

Having too much data is as good as having no data. While a traditional BMS presents data, many times it can be too much and overwhelming. With all of this data you have two options: 1) ignore it (which happens all too frequently due to an overload of alerts, alarms, notifications, etc.), or 2) implement building analytics that enable you to digest the data, analyze it and take intelligent and actionable steps that lead to optimization. This second option is the next evolution of building management systems.

If you’ve taken care to identify the most appropriate data for your goals, the information captured will help build the business case; supporting all decisions regarding changes to your HVAC system and chiller plant. So, first verify the data. Next, define and prioritize the required action items. Then, don’t wait – take action.

STEP FIVE: Stabilize current operations

Many hospitals use recommissioning or retrocommissioning to ensure their plants are operating correctly. Although this improves performance, it is a static exercise that corrects issues only at one point in time.

In our experience, a better approach is to use constant commissioning. This will provide complete transparency and ensure your systems are running properly, 24/7. Constant commissioning immediately notifies operations when something is wrong, rather than waiting until the next commissioning, which could be a year or longer. Let’s face it, over the course of 12 months, equipment ages and degrades and other variables can impact your systems. Maybe there are closures or additions to the facility. Unusual weather conditions can occur along with a multitude of other factors that can strain or change the operational integrity of your plant.

The most important benefit of constant commissioning is the visibility of efficiency, or inefficiency, on specific pieces of equipment. Continuous monitoring ensures that a plant’s true performance is in line with its original design standards. This type of tracking allows you to conduct cost-saving analysis and to adjust components as needed in order to maintain optimal energy efficiency.

Because the plant is a dynamic environment, issues are constantly occurring. In today’s lean economy, few hospitals have extra facility workers, so they must focus on the most important faults. Your system should be able to prioritize those faults for you. At Broward Health, 70 percent of all calls to their help desk center are from individuals complaining that they are too hot or too cold. A proper feedback loop could identify root causes quickly and allow employees to focus on proactive, preventive work rather than on reactive control issues.

Once you have a constant commissioning program in place, you can also ensure that all repair work both achieves and maintains/improves your efficiency. For example, by leveraging constant commissioning, Miami Children’s Hospital was able to uncover serious inefficiencies in their plant that they then brought to their vendors to address. The objective is to develop a “fix forever” mentality.

By stabilizing first, you can often avoid spending money unnecessarily and you can expect to yield long-term savings. Efficiencies and savings are already “latent” with your current HVAC system, waiting to be discovered.

STEP SIX: Find the “Peak”

Your system is stabilized, now you’re ready to find its “peak performance” capabilities. It’s easier to accomplish this if you view achieving peak not as an expense, but as an investment that delivers true ROI via energy savings. Your organization has made a substantial investment in the chiller plant and other HVAC components. Perfecting and protecting that equipment requires an “investment” mind-set as well.

No matter the age of your system, you can start conserving energy right away by maximizing what you already have in place. Identify the key equipment, implementing set point adherence and then commit to preventive maintenance. By closely watching usage trends in this key equipment, you will be able to determine problems before they happen. We call this predictive maintenance. This methodology will enable you to analyze data in order to better model improvements and track actual cost savings, supporting your investment.

Now, you are ready to drive your system to further peak performance by applying optimization science for around-the-clock predictive maintenance. New technologies can automatically direct your HVAC system to efficiency levels not otherwise possible with conventional sequencing.

In Summary

Achieving HVAC and central plant peak performance will generate significant cost savings, protect your current plant investments and give a boost to your green initiatives. Today, driving your facility to peak performance is possible though advanced analytics, data science, optimization and continuous commissioning. Next generation, cloud-based technologies apply mathematical models and analytics to automatically manage your HVAC system, thus creating unprecedented performance.

In addition to performance, predictive maintenance enables you to closely watch the usage trends in key equipment and identify issues before a breakdown occurs. Remember, emergency repairs are three times more expensive than planned ones. Predictive maintenance requires longer-term trending of specific data, which is simplified with the right software in place. And, with the proper data in hand, you can better model improvements and also track the actual cost savings.

The types of inefficiencies uncovered at BHMC will be typical in health facilities and other commercial and industrial buildings, especially as they begin to implement analytics and gain insight into the operations of their plants. By moving your facility into the new era of HVAC and central plant peak performance, you can expect to see total energy consumption drop significantly, resulting in savings of up to 40 percent.

Manny Rosendo is Co-Founder and CEO of Entic, a specialist in proprietary, cloud-based technology that enables building systems and HVACs to achieve peak performance using advanced analytics and data science. Please visit: www.enticusa.com.

Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.



Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

Tags: , , , , ,


About the Author

is many, many people. We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people. :D



  • jack

    A step in the right direction, yes. Recommend performing a co-generation study for major savings & rliability. Hospitals are usually perfect for cogen.

  • Matt

    It is always amazing to me how slowly best practices spread across existing buildings. In the late 70s or early 80s, two museums showed massive NRG and $ savings by running chillers at night and freezing ball. Then using the during the day. This allowed smaller chillers plus they mostly ran at night off peak. Not only did it lower the building peak power need, it shifted it to night when it was cheaper. Oh and the chillers were more efficient at night when it was cooler than during the day.

  • JamesWimberley

    An advert, but fair enough. This sort of thing – intelligent building management – is making a growing difference in commercial, industrial and service facilities everywhere. In hospitals, it makes a difference to the comfort of patients and staff; it would be surprising if this did not make a difference in health outcomes.

Back to Top ↑