Clean Power A dye-sensitized solar cell panel is tested in the laboratory at the School of Chemical Science and Engineering. Dye-sensitized solar photovoltaics can be greatly improved as a result of research done at KTH Royal Institute of Technology.
Image Credit: David Callahan

Published on September 5th, 2013 | by James Ayre

2

Solar Cell Energy Efficiency And Lifespan Improved With Ion-Conducting Polymer

September 5th, 2013 by  

Dye-sensitized solar cells will soon receive a big boost to their energy efficiency and durability/lifespan thanks to new research from Stockholm’s KTH Royal Institute of Technology. The improvements are thanks to the discovery of a previously unknown quasi-liquid, polymer-based electrolyte — one that works to notably increase a dye-sensitized solar cell’s voltage and current, while at the same time lowering the resistance between its electrodes.

The new findings emphasize the advantages/possibilities of speeding up the movement of oxidized electrolytes in a dye-sensitized solar cell (DSSC) — leaving open the possibility for further improvements through similar means.

“We now have clear evidence that by adding the ion-conducting polymer to the solar cell’s cobalt redox electrolyte, the transport of oxidized electrolytes is greatly enhanced,” states James Gardner, Assistant Professor of Photoelectrochemistry at KTH. “The fast transport increases solar cell efficiency by 20 percent.”

A dye-sensitized solar cell panel is tested in the laboratory at the School of Chemical Science and Engineering. Dye-sensitized solar photovoltaics can be greatly improved as a result of research done at KTH Royal Institute of Technology. Image Credit: David Callahan

A dye-sensitized solar cell panel is tested in the laboratory at the School of Chemical Science and Engineering. Dye-sensitized solar photovoltaics can be greatly improved as a result of research done at KTH Royal Institute of Technology.
Image Credit: David Callahan


The press release from KTH the Royal Institute of Technology has more:

A dye-sensitized solar cell absorbs photons and injects electrons into the conduction band of a transparent semiconductor. This anode is actually a plate with a highly porous, thin layer of titanium dioxide that is sensitized with dyes that absorb visible light. The electrons in the semiconductor diffuse through the anode, out into the external circuit.

In the electrolyte, a cobalt complex redox shuttle acts as a catalyst, providing the internal electrical continuity between the anode and cathode. When the dye releases electrons and becomes oxidized by the titanium dioxide, the electrolyte supplies electrons to replenish the deficiency. This “resets” the dye molecules, reducing them back to their original states. As a result, the electrolyte becomes oxidized and electron-deficient and migrates toward the cathode to recovers its missing electrons. Electrons migrating through the circuit recombine with the oxidized form of the cobalt complex when they reach the cathode.

In the most efficient solar cells this transport of ions relies on acetonitrile, a low viscosity, volatile organic solvent. But in order to build a stable, commercially-viable solar cell, a low volatility solvent is used instead, usually methoxypropionitrile. The problem is that while methoxypropionitrile is more stable, it is also more viscous than acetonitrile, and it impedes the flow of ions.

But with the introduction of a new quasi-liquid, polymer-based electrolyte (containing the Co3+/Co2+ redox mediator in 3-methoxy propionitrile solvent), the research team has overcome the viscosity problem. At the same time, adding the ion-conducting polymer to the electrolyte maintains its low volatility. This makes it possible for the oxidized form of the cobalt complex to reach the cathode, and get reduced, faster.

And the faster that this transport occurs, the less that the cobalt complexes can react with the electrons in the semiconductor anode — leading them to instead react with the electrons at the cathode. This lowers the resistance, as well as increasing the voltage and the current in the dye-sensitized solar cell.

The new research was just published in the Royal Society of Chemistry’s journal, Physical Chemistry Chemical Physics
 
Get CleanTechnica’s 1st (completely free) electric car report → “Electric Cars: What Early Adopters & First Followers Want.”
 
Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.

 

Tags: , , , , , , ,


About the Author

's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy. You can follow his work on Google+.



  • dcard88

    OK, so this is only for DSSC? What percentage of cells would that be? 5% 40%

  • dcard88

    S o if I understand correctly, in a couple years, most PV modules will have an added efficiency increase of 20%. the cheap 15% modules will go to at least 18% and the expensive 22% modules will go to at least 26%?

Back to Top ↑
  • Advertisements

  • Top Posts & Pages

  • Cool Cleantech Events

    Low Voltage Electrification Event, April 25-27. Detroit, Michigan (US)
    Delve deep into the benefits and challenges associated with EV power supply.

    Offshore Wind Market Development USA, May 11-12, Boston, Massachusetts (US)
    Network and establish your business in one of North America’s largest energy industries.

    Energy Storage USA, June 15-16, San Diego, California (US)
    Only event in the United States focused exclusively on the commercialization of storage.

    More details are on: Cleantech Events.

  • Advertisement

  • CleanTechnica Electric Car Report

    Electric Cars Early Adopters First Followers
  • Tesla Model 3 Review by EVANNEX

    Tesla Model 3 Review from EVANNEX
  • Tesla Model 3 Exclusive Video

    Tesla Model 3 Video
  • Tesla Model 3 Exclusive Pictures

    Tesla Model 3 Video
  • Tesla Model X Review #1 (Video)

    Tesla Model X Review from new owners Zach Shahan
  • Tesla Model X Review #2 (Pictures)

    Tesla Model X Review from Kyle Field
  • Tesla Model S Long-Term Review

    Tesla Model S Long Term Review from Kyle Field
  • Nissan LEAF Long-Term Review

    Nissan LEAF Long Term Review from Cynthia Shahan
  • Interview with Michael Liebreich

    Interview with Michael Liebreich
  • Interview with Akon (Teslas & Solar)

    Interview with Akon Tesla Model S Tesla Model X Solar Power Africa
  • Interview with Dr Nawal Al-Hosany

    Interview with Dr Nawal Al-Hosany
  • Interview with Gro Brundtland

    Gro Brundtland
  • Interview with President of Iceland

    President of Iceland Ólafur Ragnar Grímsson
  • Interview with Nick Sampson

    Faraday Future VP Nick Sampson
  • Interview with Dipal Barua

    Dipal Barua 1st ZFEP WInner
  • Interview with Jonathon Porritt

    Jonathon Porritt
  • Interview with Clint Wilder

    Interview with Clint Wilder
  • Interviews with Solar Impulse Pilots

    Bertrand Piccard Andre Borschberg
  • Check out more CleanTechnica Videos.

  • Join The Solar Revolution!

    Edison-solar-energy solar-energy-spill-nice-day
  • Cost of Solar Panels

    cost-of-solar-down
  • Search the IM Network


Shares