CleanTechnica is the #1 cleantech-focused
website
 in the world. Subscribe today!


Biofuels Argonne researchers create synthetic nanobowls to aid biofuel production

Published on January 16th, 2013 | by Tina Casey

0

Tiny But Tough Nanobowls Offer a Pathway to Low Cost Biofuels

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

January 16th, 2013 by
 
Scientists at Argonne National Laboratory have figured out a way to synthesize nanoscale, bowl-shaped “enzymes” that mimic the way real enzymes selectively interact with other molecules, but that are far more durable and hardy than their natural counterparts. The breakthrough will enable researchers to develop efficient, low cost catalysts for making a variety of products including advanced biofuels.

Argonne researchers create synthetic nanobowls to aid biofuel production

Making Nanoscale Bowls, Atom by Atom

According to Argonne writer Jared Sagoff, the synthetic nanobowls use the same “lock and key” mechanism that generally characterizes natural enzymes.

In both cases, the enzyme can be described as a lock, that will only open in response to a molecule of exactly the right shape and size.

The problem with natural enzymes, in terms of biofuel production, is that they operate most efficiently under natural conditions. In other words, they generally cannot tolerate the extremes of temperature and pressure that characterize advanced biofuel production.

In addition to developing more durable enzymes, a related challenge is to lower the cost of enzymes as a proportion of the cost of biofuel.

To build the synthetic enzyme, the researchers used a large bowl-shaped organic molecule called a calixarene as a template. They put the calixarene on a surface made of titanium dioxide (a photocatalyst that can “eat” smog and perform other sustainability-related functions), and used atomic layer deposition to build up walls of aluminum oxide around the template.

Once the walls reach the desired height, the calixarene is burned away, leaving the bowl-shaped inorganic “enzyme.”

By manipulating the size and depth of the bowl, researchers can custom-build the synthetic enzyme so that only a molecule of exactly the right type will fit inside. Basically, the nanobowls perform the function of a sieve, which sorts out undesired molecules that would spark uncontrolled reactions.

The Quest for the Perfect Biofuel Enzyme

Durable, precision-tailored catalysts would go a long way toward enabling the biofuel industry to achieve price parity with fossil fuels, but the Argonne research has a way to go before its application to biofuel production can be demonstrated conclusively.

In the meantime, researchers have also begun to identify extremely hardy enzymes in nature that could be further modified to withstand the biofuel production process.

For example, a team of researchers at another Department of Energy project, the Joint Genome Institute, has identified a pair of heat-tolerant fungi called Thielavia terrrestris and Myceliophthora thermophila. Their enzymes can tolerate temperatures up to 75 centigrade, compared to a limit of 35 degrees for the typical enzyme.

Researchers are also looking at a class of bacteria called extremophiles, which can be found in unusually harsh environments such as undersea thermal vents.

Image: Bowls by Martin Cathrae.

Follow me on Twitter: @TinaMCasey.

 

Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.

Print Friendly

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

Tags: , , , , , ,


About the Author

Tina Casey specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Tina’s articles are reposted frequently on Reuters, Scientific American, and many other sites. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.



Back to Top ↑