New Way To Create Electricity Out Of Sunlight Discovered, A Solar Energy Funnel





Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

 
The discovery of a revolutionarily different way to generate electricity from sunlight has been made by researchers at MIT. The new technology, which is essentially a solar energy funnel, is able to use a much broader spectrum of sunlight’s energy than conventional solar does, by utilizing materials under elastic strain.

20121128-002734.jpg

“We’re trying to use elastic strains to produce unprecedented properties,” says Ju Li, an MIT professor and the lead author of a paper describing the new concept.

The ‘funnel’ in this case is a metaphor, though — it is electronic forces creating the funneling effect, not gravity as in a literal funnel. “Electrons and their counterparts, holes — which are split off from atoms by the energy of photons — are driven to the center of the structure by electronic forces.” But, interestingly, as the process occurs, the material actually assumes a funnel shape. The material is a stretched sheet of “vanishingly thin” material, pushed down at a center point with a microscopic needle, producing a curved shape similar to a funnel.


 
The pressure from the needle creates an elastic strain that increases toward the needle point. Because of the variation in the strain, the atomic structure is changed to the point where different sections are ‘tuned’ to different wavelengths of light. Making it possible to make use of not only visible light, but also the rest of the spectrum, most of which is invisible. The majority of the energy in sunlight is invisible.

The material used is a thin layer of molybdenum disulfide, which is a semiconductor that can form a film just a single molecule in thickness. And it possesses a ‘crucial characteristic’ called bandgap, which allows it to be formed into solar cells. But unlike the material used in most solar cells, silicon, “putting the film under strain in the ‘solar energy funnel’ causes its bandgap to vary across the surface, so that different parts of it respond to different colors of light,” the MIT press release notes.

“It turns out that the elastic strain, and therefore the change that is induced in electrons’ potential energy, changes with their distance from the funnel’s center — much like the electron in a hydrogen atom, except this ‘artificial atom’ is much larger in size and is two-dimensional.”

The funnel will also lead to better charge collection, the researchers think. In typical solar cells, the excitons randomly move throughout the material after they’ve been generated by photons. But in the funnel, the characteristics of the material direct them to the collection site at the center, which should lead to more efficient charge collection.

“People knew for a long time that by applying high pressure, you can induce huge changes in material properties,” Li says. But more recent work has shown that controlling strain in different directions, such as shear and tension, can yield an enormous variety of properties.

The work was just published this week in the journal Nature Photonics.

Source: Massachusetts Institute Of Technology
Image Credits: Yan Liang; Creative Commons Attribution Non-Commercial No Derivatives license



Chip in a few dollars a month to help support independent cleantech coverage that helps to accelerate the cleantech revolution!
Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Sign up for our daily newsletter for 15 new cleantech stories a day. Or sign up for our weekly one if daily is too frequent.
Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

CleanTechnica's Comment Policy


James Ayre

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

James Ayre has 4830 posts and counting. See all posts by James Ayre