Your Blue Jeans May Hold the Key to Cheap Solar Power


Support CleanTechnica's work through a Substack subscription or on Stripe.

Cornell University Researchers develop new method for collecting solar energy from a dye used in blue jeansResearchers at Cornell University have developed a process for building an organic molecular-scale framework that could be used to collect solar energy.  They did it using phthalocyanines, which are common dyes used in blue jeans and numerous other products.

[social_buttons]

The researchers came up with a way to assemble the molecules into a precisely structured two-dimensional “solar paper” that is far more flexible, and potentially far cheaper, than conventional solar panels.  Though still a long way from development into actual solar cells, the structure could speed future research along by answering foundational questions about the movement of electrons through organic materials.

The Incredible Disappearing Solar Cell

In the field of solar energy, the thickness of solar cells has been rapidly diminishing, from conventional solar panels to thin-film panels, down to solar ink and solar paint.  There is even a “solar Shrinky-Dinks” thin film technology in development.  Though conventional solar panels will probably be in use for many years to come, thinner forms have a number of advantages.  They can be used in a wider variety of applications, and by virtue of their low weight they are cheaper and easier to ship.  They also have the potential to be less expensive to manufacture.

Making “Solar Paper” From Blue Jean Dye

Because phthalocyanines are very close in structure to chlorophyll, and chlorophyll is the substance in plants that absorbs sunlight, phthalocyanines have been a focus of solar energy research.  Until now, the problem has been to get phthalocyanines and other organic molecules to organize into a predictable, reliable structure.  The Cornell researchers solved the problem by applying a simple catalyst in combination with another stable molecule.  The result was “neatly ordered” two-dimensional sheets that stack on each other in a lattice pattern.  The next trick is to figure out what molecules to plug into the lattice pores, in order to form a light, flexible and durable material that collects solar energy efficiently and can be manufactured on a commercial scale.

Image: Blue jeans by lifecreations on flickr.com.


Sign up for CleanTechnica's Weekly Substack for Zach and Scott's in-depth analyses and high level summaries, sign up for our daily newsletter, and follow us on Google News!

Advertisement
 

Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Sign up for our daily newsletter for 15 new cleantech stories a day. Or sign up for our weekly one on top stories of the week if daily is too frequent.
CleanTechnica uses affiliate links. See our policy here.

CleanTechnica's Comment Policy


Tina Casey

Tina has been covering advanced energy technology, military sustainability, emerging materials, biofuels, ESG and related policy and political matters for CleanTechnica since 2009. Follow her @tinamcasey on LinkedIn, Mastodon or Bluesky.

Tina Casey has 3861 posts and counting. See all posts by Tina Casey