Along with all of these, there are very likely a few other battery technology innovations, and manufacturing innovations, Tesla will be employing in this production line that we don’t yet know about. Recent leaks suggest the diameter of the Roadrunner cells is around double that of 2170 cells. If so, this should increase the energy density at the cell level, as well as simplifying pack internals and assembly, reducing packaging cost.
It is clear that Tesla intends this Roadrunner battery project to produce cutting edge cells in terms of energy density, power density (C-rates of both charge and discharge), thermal performance, and cycle life also. Presumably, Tesla intends to prove out new methods in manufacturing efficiency (speed, energy, capital cost, yield), and thus also improved $/kWh cost of cells (compared to existing commercial nickel-cobalt cells).
Applications for Tesla’s Roadrunner battery cells
Since the Roadrunner cells will most likely quickly become the highest energy density available to Tesla at commercial volume, the company will almost certainly be deploying them in cutting edge applications. Logically, these applications will be the forthcoming Semi Truck and the Roadster, and the upcoming Plaid Tesla Model S and Model X.
I think Tesla will announce the availability of these Plaid models on Battery Day, since Porsche has recently tweaked the 2021 Taycan for more performance and Lucid Motors has also announced a high performance challenger arriving next spring.
In order to head off another upcoming extreme long range challenger from Lucid, Tesla may also announce an ultra long range variant of the Model S with a ~130 kWh Roadrunner battery which should achieve a Lucid-beating 525+ mile EPA rating (or more). The cell energy density improvement will make the weight gain minimal.
Since initially the Roadrunner cells will be expensive to produce and available in only moderate volumes, these near-term Plaid and ultra long range vehicles will command high prices commensurate with their exclusivity and initially limited production volumes. Before long we can expect further ramp up of production of Roadrunner cells, likely in some portion of Tesla’s gigafactories; very likely in Texas where the Tesla Semi and Cybertruck will be produced. The Plaid version of the Cybertruck may use the Roadrunner cells. Tesla may also work with Panasonic at Gigafactory Nevada to produce Roadrunner cells. More on how Tesla may scale up Roadrunner cells below.
The final “application” for the Roadrunner technology is simply to help Tesla diversify its strategy and strengthen its bargaining position.
Diversity, flexibility, and strategic bargaining position
We have seen that even modest energy density LFP cells will power very compelling yet affordable vehicles, which will become Tesla’s best sellers by volume. Tesla may also be able to bring some of its battery technologies — like dry electrode, tabless electrode, and electrolyte doping — to bear on LFP cells, perhaps in partnership with CATL, perhaps ultimately with its own LFP production. Tesla will meanwhile continue to find good uses for their existing cells with decently high density. These are the Panasonic NCA cells that supply “Long Range” and “Performance” vehicles, and LG’s NCM cells that power Tesla’s Long Range Model 3s and soon Model Ys in China.
Since Tesla’s highest volume vehicles are so efficient that they can make use of fairly generic cells from any available supplier, the company can shop around pretty much anywhere to ensure it is benefitting from the most competitive prices on the open market. This puts Tesla in a good spot to negotiate the most competitive contracts, potentially with a wide range of suppliers.
Add to that available palette the in-house Roadrunner cells, which ensures that Tesla is not dependent on anyone else’s technology to maintain its reputation for being at the cutting edge of halo electric vehicles and frontier applications (like long-range Semi Trucks), and Tesla should be in a strong position.
Related to the non-dependence point, this flexible strategy, drawing on diverse types of cells, allows Tesla to hedge against the vagaries of the mineral supplies and cost fluctuations, especially those for nickel and cobalt. Having access to a stable low-price technology like LFP means that Tesla’s core business of making and selling ever higher volumes of battery electric vehicles and battery energy products is shielded from these fluctuations and potential bottlenecks.
This diversified and flexible approach to cell supplies has long been in the works for Tesla. As Drew Baglino said in the 2019 annual meeting, in regard to Tesla needing a large-scale solution to battery cell production, “We are not sitting idly by, we’re taking all the moves to be masters of our own destiny here, technologically and otherwise.”
“Million-mile” battery
Since at least 2015, Elon Musk has referred to Tesla’s plans to achieve EV powertrains with “a million miles” of useful life, including eventually for the batteries. This obviously depends on how many miles a battery’s charge cycle enables, and the number of charging cycles the cells can perform before significantly degrading.
If a battery enables a vehicle to have 400 miles of range, then 2,500 cycles gives you a million miles. 300 miles of range requires ~3,333 cycles, and so on. The cutoff point in defining “useful life” (or “significant degrading”) is typically when the battery pack still retains at around 70% of its original energy capacity. Even below 70%, the battery and its cells will still be valuable for less energy dense uses, such as in stationary storage applications.
The Jeff Dahn research group has worked on bringing nickel-based cells up to 4,000 to 6,000 cycles in the lab, using single crystal cathode particles and custom electrolytes. Commercial production versions would have to balance cycle life with other characteristics, but should be able to get to the 2,500 to 3,000 cycles to claim “a million miles.” Maxwell has reported that its dry electrode manufacturing technology also increases cell cycle-life.
There are only a couple of high-use cases where a million-mile capability would be obviously useful — Tesla’s semi trucks and robotaxis. Most privately used vehicles almost never get too much over 300,000 miles of lifetime use (which Teslas can already provide), requiring over 20 years of average driving duty (13,500 miles per year for typical US drivers). A private vehicle is also well behind the curve on safety technology (and other features) when 20 years old, even if its powertrain is in perfect condition.
As we covered above, LFP isn’t a good fit for weight sensitive applications like the Tesla Semi, so despite some varieties of LFP working beyond 2,500 cycles already, the Semi will use nickel-based versions of a “million-mile battery.” An LFP version would be more cost effective in robotaxis. Note that Tesla’s existing LFP cell supplier partner CATL has already announced its own “million-mile battery,” but has said this technology neither uses conventional LFP nor nickel-based cathodes.
How to scale battery production in practice?
The Kato road facilities will probably only supply around 10,000 to 20,000 units of 100 kWh battery packs, or equivalent, per year. This will be okay in the short term if only the Plaid S and X, ultra long range S and X, and initial units of the Tesla Semi need to be supplied. But each Semi will probably use at least 800–1000 kWh of cells, so when these vehicles scale beyond a few hundred units per year, the Roadrunner battery production will have to scale up. And that’s before even considering a Plaid Cybertruck and the Roadster.
This scale will likely take place in some portion of Tesla’s new gigafactories (Shanghai, Berlin, and Austin), but likely Roadrunner may not be the exclusive gigafactory cell type. Panasonic’s classic NCA cells will continue to be produced at Gigafactory Nevada, and depending on what supplier relationships Tesla has negotiated, it’s quite possible that Tesla will also have lines making its own LFP cells, or partner on those lines with CATL.
The in-house vs supplier part of the story is difficult to predict, since some of Tesla’s strong strategic negotiating position, highlighted above, can be achieved by just having modest in-house cell production, flexible cell needs, and varied arrangements with outside suppliers.
However, if Tesla’s Roadrunner cells work out as cost efficient and high performance as they are planned to be, it would only make sense for Tesla to ramp up the manufacturing capacity, since they will likely be the most cost competitive nickel cells available. Bear in mind, though, that the potential nickel and cobalt mineral supply issues mentioned above mean that Tesla will look to avoid over-dependence on any cell type beyond LFP, unless Tesla can get very reliable, stable in price, and massively scalable mineral supply agreements in place.
Some such mineral supply contracts will be necessary for even the modest Kato road production of Roadrunner. The scale of those contacts is something to watch for on Battery Day to indicate the volume of Tesla’s roadrunner plans.
Even if Roadrunner goes to plan, as noted above, LFP (since it can also benefit from some of the same novel manufacturing techniques) will still have the cost advantage and ideal fit for the entry level vehicles. Again, in my view, LFP is Tesla’s route to true mass market sales volumes, and fully disrupting sales of internal combustion engines.
Other Tesla Battery Day technologies?
What are some of my more off-the-wall thoughts on what might arrive at Tesla Battery Day?
It might be sensible to put a small 50 kg (around 1 kWh) Maxwell supercapacitor bank into the Plaid Model S (and a future Roadster) for battery/motor cooling benefits during hard track sessions.
Why? Repeated extreme acceleration and regen adds a lot of battery pack heat (and motor heat). The limiting factor for performance EVs on race tracks is not power or performance, but heat buildup and thermal throttling to protect components. A small supercap cache that shaves off 50% of the battery’s load for the hundreds of acceleration/regen tasks (e.g., hundreds on a single lap of the Nürburgring Nordschleife) would make a huge difference to controlling battery pack temperature, and allow more cooling to go to motors and inverters.
Since this simply passes the buck (and the supercapacitors likely get hotter than the batteries due to lower round trip efficiency), the feasibility of this is dependent on how heat tolerant Maxwell’s supercapacitors are. I will also concede that if the tabless electrode design of the Roadrunner cells works exceptionally well, extreme battery heating may be significantly mitigated anyway. This would remove any advantage of a supercap cache.
We already know that the Model Y’s heat pump and octovalve will eventually make their way to all other Tesla vehicles, since Elon referred to this when discussing “our passenger vehicles” and efficiency, above.
The Tesla Semi will likely not yet be announced as production ready, but we may see a formal update announcement on it — rising in range to 600 or more miles perhaps, thanks to the Roadrunner cells.
Tesla’s V3 Superchargers are officially rated for 500 volts, and the vehicles currently have power systems at 400 volts. At some point we will probably see the higher end Teslas migrating to a 500 volt system design. Otherwise, why the gain in Supercharger voltage capability? Tesla Battery Day may be a good time to announce that, or it may come later.
An aesthetic refresh may come to the Model S and X, and a modest external refresh will obviously be somewhat necessary for the Plaid versions anyway, given their wider stance and large air diffusers.
We know that smaller and more affordable Tesla models will come in the future, but I don’t see any announcements on these happening for another year or so, partly because they may Osborne orders and sales of the Model 3 and Model Y. These future smaller Tesla models may actually only be properly announced once they are available to order. Remember how the Model Y was unveiled in a fairly low-profile event, for fear of Osborning Model 3 sales, and production started quietly? This may be even more the case for these future mass market models.
Conclusion
In my interpretation, knowing the cost advantages of LFP packs over nickel-cobalt battery packs, Elon’s words on the Q2 2020 earnings call were clear. Tesla’s entry vehicles, with close to 300 miles of range, will move to cost effective LFP technology. These will be Tesla’s highest sellers globally, because almost 300 miles of range is enough for most consumers, and once that’s included, it is competitive pricing that is the key factor in scaling. Tesla will look to source these from CATL, but may also begin to produce them in-house in partnership with CATL or other LFP suppliers. Some of Tesla’s general battery technologies should be applicable to LFP and may further reduce costs.
Tesla’s Roadrunner nickel batteries will incorporate all of Tesla’s battery technologies and break new ground in overall performance terms. These will enable Tesla’s cutting edge vehicles to stay well out in front in headline performance, range, charging, and longevity specifications. They will also become the most cost competitive nickel-based cells that Tesla has access to. Tesla will keep Roadrunner in-house or in tight manufacturing partnerships (Panasonic and/or LG), and gradually expand Roadrunner production volume in Austin, Berlin, and possibly the other Gigafactories.
Having this two-pronged novel approach to cell supply, at least one of which will be in-house, in addition to the existing Panasonic and LG arrangements, gives Tesla flexibility and puts the company in a strong strategic position regarding negotiations and supply contracts.
I think these are the key parts of the picture, but I’ve probably missed some other obvious things, and hopefully there will be some surprise “one more things.” Please jump into the comments to share your thoughts.
Sign up for CleanTechnica's Weekly Substack for Zach and Scott's in-depth analyses and high level summaries, sign up for our daily newsletter, and follow us on Google News!
Advertisement
Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Sign up for our daily newsletter for 15 new cleantech stories a day. Or sign up for our weekly one on top stories of the week if daily is too frequent.
CleanTechnica uses affiliate links. See our policy here.CleanTechnica's Comment Policy