What Are The Primary Clean Energy Sources For Cities Of The Future?
Support CleanTechnica's work through a Substack subscription or on Stripe.
As an obvious statement, cities aren’t energy islands which can or should try to be self-sufficient. Cities are specialized areas for economic growth through trade and innovation, not net producers of raw materials or energy. That said, there are obvious paths for cities to exploit more wind, solar, hydroelectric, geothermal, and other forms of clean energy.
From an urban-centric perspective, exploiting natural fuel sources has different requirements, so I’ll explore each separately.
Wind Energy
Energy density is a fictitious problem in 2017, but regardless, wind turbines need space around them and a lack of obstructions in front of them in order to be most cost effective. That’s not what cities are good at.
Solar Energy
But of course cities aren’t necessarily where the best solar resource is, have a lot of taller buildings which shade lower buildings, and have a lot of roofs which either aren’t aligned to the sunshine or have other things like HVAC on top of them. The numbers I’ve seen suggest that perhaps 25% of urban buildings could have solar on the rooftops, and my calculations suggest that only in sprawling southern US cities could more electricity be generated than a household uses, on average.
Cities need more electricity than they can get from solar inside their boundaries. As a result, like wind energy, they require good transmission grids and efficient energy markets to bring electricity from high-solar-resource areas to urban areas. These interconnections are also under development around the world, so this issue is being resolved.
Hydroelectric & Water
Water heat exchange systems are very viable in cities on larger bodies of water, however. Toronto, for example, provides district heating and cooling to multiple buildings by pumping heat exchange fluid (water) through pipes running moderately deep into Lake Ontario. This process requires that buildings be set up to exchange fluids for heat exchange, however, so it has limits in terms of retrofitting. If a new district close to water is transforming from industrial land to commercial and residential, this is an excellent piece of infrastructure to invest in.
Geothermal
Iceland is the exception rather than the rule, as it can’t escape the highly active areas in that island country. Japan is an exception in a different way, as it has hotsprings throughout the country which have high geothermal potential, but citizens are strongly protective of those springs, as they are cultural sites that have been used for bathing for centuries, so are much less exploited than those in Iceland.
Heat-exchange for cooling and heating
However, you can’t really set up drilling sites in cities unless you are starting a major new development shifting an industrial site to commercial and residential, or you’ve torn down an existing building. That’s why geothermal in most cities is restricted to new developments. For example, one luxury condo in downtown Toronto uses geothermal heat exchange to minimize its heating and cooling bills. Nice looking building too.
In summary, it’s mostly about building transmission and markets to get electricity to cities and exploiting natural heat / cooling opportunities inside cities as they become available.
Sign up for CleanTechnica's Weekly Substack for Zach and Scott's in-depth analyses and high level summaries, sign up for our daily newsletter, and follow us on Google News!
Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Sign up for our daily newsletter for 15 new cleantech stories a day. Or sign up for our weekly one on top stories of the week if daily is too frequent.
CleanTechnica uses affiliate links. See our policy here.
CleanTechnica's Comment Policy