Why Is There So Much Confusion About “Small Wind”?
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
Have you ever noticed energy blogs or articles about small wind turbines comparing them directly with big wind technology and solar? I am writing this article to provide a little background on where small wind turbines can be very successful and where they make absolutely no sense. It also explains why the market for “Small Wind” is vastly different from that of “Big Wind.”
First of all, “Small Wind” has been defined by the American Wind Energy Association (AWEA) as any turbines under 100 kW of rated power. As we all know, 100 kW wind turbines aren’t small! Therefore, others have decided to define them as anything up to 10 kW. For the purpose of this article, we use the same definition as AWEA, up to 100 kW.
For more wind turbine basics, here is a pretty nice summary from MIT: MIT-Wind-Power-Basics.PDF
There are a few common beliefs that we have noticed from talking to interested buyers from all over the world.
Common belief #1: “Small Wind is more expensive than Big Wind.” That is generally a true statement, if one compares only the installed cost per rated W. For onshore Big Wind the cost is generally around $2/W of rated power (offshore Big Wind is up to $9/W) and that of onshore Small Wind currently spans from $3 to $7/W. However, Big Wind requires massive grid infrastructure and long-term Power Purchase Agreements (PPAs) to be negotiated with utilities (or determined by regulation), whereas Small Wind typically offsets the customer’s full retail cost of electricity, which can be up to 5 times higher than long-term PPA rates. My home country of Germany is a good example where utility grid capacity is causing some major hurdles for the evolving “Energiewende” (loosely translated the “Transition to Clean Energy”) and more distributed power could lessen the strain on the existing grid. Feed-in tariffs for Big Wind have been declining continuously, whereas the consumer cost of electricity (which is the cost that Small Wind can offset) has almost doubled over the last 10 years.
Here is an example comparison of a 25 kW rooftop solar installation at $3 per Watt (installed, with building permit, inverter, and all electrical work), and a 25 kW wind installation at $3/W installed (which we have verified is feasible, although the price range can go up substantially).
- Scenario A: 25kW solar is installed on a rooftop in Arizona, producing over 5 kWh/day per kW-peak installed (annual average), resulting in an AEP of roughly 43 MWh. If the wind-turbine is installed at a low-wind location with annual average winds of let’s say 5 m/s, the AEP would only amount to 31 MWh at 95% system availability. In this case, the solar investment would clearly yield better returns.
- Scenario B: The exact same solar and wind product would be installed at a fairly good wind location in Japan with annual average winds of 7.5 m/s (there are many such locations, especially in coastal areas, mountain ranges, and islands), the numbers would be as follows: Solar would yield an annual average of around 2.7 kWh/day per kW-peak installed resulting in an AEP of roughly 23.4 MWh. The wind turbine, however, would produce an AEP of 74 MWh at 95% system availability. In this case, the wind investment would yield 3 times more annual energy than solar.
It should be noted that these scenarios only compare the Annual Energy Output of an equivalent investment amount (wind/solar) in different locations. However, any investor in distributed clean energy will look at the existing federal, state, and local incentives and the specific feed-in-tariffs (FITs) at the site. For example, the present FIT for Small Wind in Japan is roughly double that of Small Solar, making the wind investment of scenario B roughly 6 times more profitable in Japan.
Generally, the success of Small Wind has not been as consistent as that of Solar, mostly because it is a lot more complex to understand and evaluate. We recommend that any property owner, business owner, developer, or investor interested in Small Wind seek advice from a professional and conduct a wind survey at the location to improve the prediction of the AEP and the success of the installation.
Our conclusion: Despite its higher complexity, there are plenty of locations and applications all around the world where Small Wind is superior to any other distributed clean energy technology currently available. And for those who choose any of the more aesthetic turbine designs, you will be pleasantly reminded of your investment, not only by the monthly energy reports….
About the author: Hagen Ruff is the founder and CEO of Chava Wind LLC and Chava Energy LLC.
More info: www.chavawind.com or www.linkedin.com/in/hagenruff
Top two images and last image by Chava Wind/Hagen Ruff; wind turbine in mountains, small wind turbine, and small wind turbines behind rooftop solar panels via Shutterstock
Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Sign up for our daily newsletter for 15 new cleantech stories a day. Or sign up for our weekly one if daily is too frequent.
CleanTechnica uses affiliate links. See our policy here.
CleanTechnica's Comment Policy