Connect with us

Hi, what are you looking for?

CleanTechnica
Liquid cyanobacteria culture is grown in Jianping Yu's lab at NREL to advance sustainable ethylene production. Photo by Dennis Schroeder, NREL

Research

Bacteria Could Help to Capture Greenhouse Gases

Image courtesy of Canadian Light Source, Dr. Dustin King, a postdoctoral researcher in Dr. David Vocadlo’s lab in Simon Fraser University’s Department of Chemistry.

Carbon dioxide is an important molecule necessary for life on Earth. Trees need COfor photosynthesis, crops produce higher yields in its presence, and some bacteria can transform it into food. The molecule is even an important part of human health, driving us to take in big breaths of oxygen.

However, too much CO2 can have a disastrous effect on ecosystems and contribute to climate change. That is why scientists want to know how to strike a balance.

With the help of the Canadian Light Source (CLS) at the University of Saskatchewan, researchers from Simon Fraser University are investigating how organisms sense and respond to CO2.

Their research could help advance human and environmental health and lead to new strategies for carbon capture.

“It’s very important for organisms to be able to sense local CO2 concentrations and respond because it’s such an essential gas,” said Dr. Dustin King, a postdoctoral researcher in Dr. David Vocadlo’s lab in the university’s Department of Chemistry.

In a paper published in Nature Chemical Biology, King and colleagues examined the important role CO2 plays in cyanobacteria — a photosynthetic organism found in water.

Cyanobacteria use carbon to create essential nutrients that sustain their life cycle.

“They are able to capture it from the atmosphere, fix it directly, and add it to simple organic molecules” said King. “Understanding how cyanobacteria regulate CO2 fixation may give us an avenue for developing improved CO2 capture technologies.”

King believes we may be able to leverage the system within these organisms, along with industrial processes, to help reduce CO2 emissions.

Using the CLS’s CMCF beamline, the team could see detailed molecular structures and study how CO2 binds to a bacterial protein.

“It would be impossible to do it without the CLS because we require high resolution detailed molecular structures,” stated King. “Seeing how these beamlines at the CLS have evolved has been just amazing. Now we collect data sets in a matter of half a minute or so, it’s quite incredible.”

King, Dustin T., Sha Zhu, Darryl B. Hardie, Jesús E. Serrano-Negrón, Zarina Madden, Subramania Kolappan, and David J. Vocadlo. “Chemoproteomic identification of CO2-dependent lysine carboxylation in proteins.” Nature Chemical Biology (2022): 1–10. https://doi.org/10.1038/s41589-022-01043-1.

Courtesy of Canadian Light Source.

Related story and featured image courtesy of NREL Cyanobacteria: Research Team Advances Biological Alternative To Producing Common Petrochemical.

 
Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 

Don't want to miss a cleantech story? Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Advertisement
 
Written By

We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people, organizations, agencies, and companies.

Comments

You May Also Like

Aviation

In the EU, airlines are under pressure to cut carbon emissions or pay for the emissions they create. They are also under some pressure...

Buildings

The National Renewable Energy Laboratory (NREL) has been selected to receive over $5.4 million from the U.S. Department of Energy Advanced Research Projects Agency-Energy...

Climate Change

The manager for strategic partnerships at Climeworks, Barbara Truyers, has stated that the cost of Direct Air Capture technology is set to drop as...

Clean Power

As the Russian Baltic Fleet rattles its sword, renewable energy stakeholders in Sweden and elsewhere are eyeballing Baltic Sea offshore wind for a foothold...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.