A Tesla Model X On Mars Would Require A Few Changes

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Elon Musk recently decided to taunt the world with the delightful idea of sending his original Tesla Roadster into orbit around Mars playing Space Oddity on its stereo.

This led to a Quora question and resultant answer by the awesome Sierra Spaulding. In turn, that led to a discussion of what would be required to run a Tesla on Mars. Of course, this was an excuse for me to ask the Quora hivemind the question: What engineering changes would be required to make it possible for a Tesla Model X to run on Mars? After all, it will take more than just putting acrylic paint on canvas as the artist who painted this prescient painting did.

Being Quora, some people with deep insight and experience answered.

Clayton Badeaux is part of the support staff on the PHOENIX mission to Mars

Duncan Cairncross is a professional engineer

Ronak Chheda studied engineering at the Thadomal Shahani Engineering College

It was interesting to read what these deeply educated and insightful people contributed, in addition to Sierra’s comments in various places. So, what did they have to say?

Temperature

At -120 degrees Celsius, most of the rubber bits of Teslas would fail. The biggest concern here would be the tires of course. They just won’t cut it. All of the liquids would freeze. And some of the metal bits would become so brittle that they would just fail. And then there is battery temperature. Tesla batteries like human survivable temperatures and fail rapidly if they are really hot or cold. Of course, there’s the problem of human survival in a Mars Tesla. Heat and oxygen are needed. The Model X will be seriously bulked by insulation. But, of course, all of these problems are often bigger for internal combustion engines. More hoses, liquids, and the like.

Pressure

The atmospheric pressure on Mar is about 0.6% of Earth at sea level. Obviously, the tires would likely just pop, but since they’d be brittle from cold anyway, it’s a double whammy. What’s more interesting is that the batteries are designed to function in a certain pressure differential. With Mars’ pressure, the batteries would likely just pop. The air suspension would be hosed too. Oh, what about the air bags! Of course, you have a choice of pressurizing the cabin or remaining in pressurized suits for your joy ride on the Red Planet.

Ain’t no roads on Mars

Yeah, Teslas were designed assuming smooth, silky tarmac. While there are people who use Model Xs on dirt roads and the like, no one pretends it’s a hardcore off-road machine. Despite the painting, roads don’t exist on Mars and won’t for a long time. Dust, holes, and stones forever. 21″ low-profile wheels aren’t going to do much good there. It’s likely that much larger diameter and larger width wheels would be required to ensure the car doesn’t disappear into a dust bowl.  Something like the Mars Rover wheel, seen here in a size-multiplying perspective, would be required. The Model X would either have to be jacked up or have its axles extended to fit the right wheels, and getting jacked up would be required in any event. Of course, that would introduce the need for a ladder.

No Tesla roadside assistance

Right now, Tesla Model X owners receive bespoke service. Well-trained service people show up with the right vehicle, tools, and equipment to fix their expensive car when it breaks down or to carry it away for servicing. It will be a while before the equivalent service appears on Mars. This means finicky things are likely to go the way of the dodo bird. Automatically opening doors? More likely a simple and robust mechanical system that is impervious to the very fine Martian dust. Delicately opening falcon-wing doors? Maybe not.

Different usage model

The Tesla Model X is a people mover with the ability to tow relatively low-weight trailers and put in some luggage or skis. On Mars, grocery shopping, commuting, and heading to the beach to kitesurf aren’t going to be top of mind. For decades, Mars would be a working colony, struggling to survive and in definite need of the cavernous space inside a Model X for things other than bucket seats. Rip those out and put in fold-down benches along the side for passengers and leave the middle open to throw useful stuff in, like solar panels.

No Ludicrous Mode for a while

Limited solar and no tarmac means conserving energy and bad traction. Peeling out in one of Tesla’s nuttier modes won’t be necessary. In fact, the Earth expectation of being able to travel 400 kilometers at 120 km/h is out the window entirely. I’d be surprised if a car reaches 100 km/h on Mars in the first 40 years of colonization outside of falling off a high cliff. So, the engine control systems will all be tuned to lower speeds.

No Autopilot

Well, at least not as it exists today. The first DARPA challenge in 2004 that kicked off the current glut of companies claiming that they have the secret sauce was actually an off-road course. But even then, GPS existed. The first thing that would be required for any somewhat autonomous driving would be a string of GPS geosynchronous satellites, and that likely won’t be a priority of the first decade. Lots of people have been talking about GPS satellites for Mars, including discussions about whether it’s even possible to do serious exploration and colonization without them, but they likely won’t be there Day 1. Back to old-fashioned ways of establishing position. There will be orbiting satellites that can feed high-definition images of position and destinations so that routes can be planned, but that’s well below the information level suitable for a vehicle to drive itself. There will undoubtedly be some driver assistance features to prevent people from driving off cliffs and the like, but Lane Control won’t be needed.

International space law and bugs

Did you know that everything that lands on Mars has to be sterile? Scientists and the people who make the rules about other planets are very worried about Earth microbes contaminating alien water and any potential lifeforms that exist there. This doesn’t matter much on most of Mars as everyone agrees that the vast majority is a sterile, frozen desert, but it does matter for the recently discovered water. The Curiosity rover wasn’t allowed to go anywhere near the apparently moist soil discovered near its position. So the Model X components would have to be assembled from scratch in a clean room, then packaged for shipment to Mars and final assembly there. What’s that, you say? Humans would be doing the assembly and they wouldn’t be sterile. Yup, that’s a tricky one. Right now there’s a Catch 22, which has the essential element for life on Mars — water — being present, but even figuring out how to test it scientifically is challenging, never mind humans drinking it.


Okay, so we can’t just send a Tesla to Mars. What’s the good news?

Electric motors don’t need oxygen

This is actually why electric vehicles are kicking butt on the gnarliest hill climb in the world, the Pikes Peak International Hill Climb. While internal combustion motors start getting confused from lack of oxygen, electric motors just keep sucking volts and climbing. That Mars is like a mountain 3 times the height of Everest doesn’t matter to electric motors. Internal combustion motors, on the other hand, do need oxygen.

Electricity is easy to find on Mars, gas not so much

So you are on Mars. It’s pretty easy to roll out your thin-film solar panels and suck up some watts. Finding oil, refining it, and getting it to your Cadillac?

Not so much. And shipping thin-film solar to Mars is much easier than shipping a tanker of gasoline.

Cool Mars wheels already exist

Want to to off-road on Mars? We’ve already done it and the wheels are scalable. Mars Rover wheels can scale up and it’s been done. The sub-40% gravity on Mars makes the cantilevered forces much more manageable. Big, scalable, and with no pressurized bits.

Climate control is a feature, not a bug

Did you know you can go camping in luxury in a Tesla right now on Earth? Climate control, glass roof, and no biting insects at the cost of 7% of range per night. Translate that to Mars and maybe 20% of the daily sunlight is converted into you and the batteries feeling comfortable.

Traction control is traction control

Unless Tesla has done something really stupid, traction control should work just fine. And it will be absolutely necessary on Mars since fine dust is a lot more like snow than sand. Without having seen any of the traction control code or sensors on a Model X, a MEMS sensor that detects differential axle rotational speeds and reduces power to one of them is a basic feature. It’s much easier on electric vehicles than on internal combustion vehicles because the torque and power curves are so much flatter, so advantage Model X there. What’s most interesting to me is that in order to get the 0–60 mph times Tesla currently manages, they likely have sophisticated models of downforce for each vehicle at different speeds so that they can maximize traction, but maybe they just do it from basics. Obviously, downforce on Mars is 38% of Earth’s while mass and hence inertia remain unchanged, so they might have to tweak the code for that.


So, you could retool a Tesla Model X and drive it around on Mars. But it probably wouldn’t end up looking like a Model X. The rover that Mark Watney drove around in the movie based on Andy Weir’s great book The Martian is much more likely to be what the hacked vehicle would look like.

And if the original Tesla Roadster SpaceX is going to try to throw into Mars orbit soon with the first test of its Falcon Heavy rocket — if that’s actually real — actually makes it, it will likely stay in space and never be brought down to Mars. It wouldn’t run,  as it would just be a pile of metal and brittle rubber.


Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Latest CleanTechnica.TV Video


Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

Michael Barnard

is a climate futurist, strategist and author. He spends his time projecting scenarios for decarbonization 40-80 years into the future. He assists multi-billion dollar investment funds and firms, executives, Boards and startups to pick wisely today. He is founder and Chief Strategist of TFIE Strategy Inc and a member of the Advisory Board of electric aviation startup FLIMAX. He hosts the Redefining Energy - Tech podcast (https://shorturl.at/tuEF5) , a part of the award-winning Redefining Energy team.

Michael Barnard has 707 posts and counting. See all posts by Michael Barnard