Connect with us

Hi, what are you looking for?


Clean Power

The UK Is Just Beginning To Tap Into Its Vast Offshore Wind Resources

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Originally published on The Conversation.
By Simon Watson

In 1993, nine 300kW turbines were installed on the eastern pier at Blyth Harbour, near Newcastle on England’s east coast. One can question whether this really counted as an offshore wind farm, but it was the UK’s first tentative step towards building wind turbines at sea. Ten years later, the country’s first truly offshore wind farm was built at North Hoyle in Liverpool Bay, 6km from the coast of North Wales. Thirty 2MW turbines were installed which could provide the electricity needs of around 40,000 homes.

Fast forward to 2016 and the UK is the world’s leading developer of offshore wind power with a total installed capacity of more than 5,000MW. The London Array, built in the outer reaches of the Thames Estuary, presently stands as the world’s largest offshore wind farm which, with a capacity of 630MW, can rival a medium-sized gas-fired power station.


Hornsea Two lies 100km off the Yorkshire coast. Most of the world’s biggest offshore wind projects are in the North Sea. wiki, CC BY

The proposed Hornsea Project Two offshore site, which the UK government has just approved, will be larger still.

More than 100km from the east coast, the project will, together with neighbouring Hornsea One, provide up to 3,000MW. It will dwarf any of the more than 60 offshore windfarms already built.

These projects are getting bigger – and heading further and further offshore. Where will it end?

Why windfarms are going further out to sea

The drive to develop offshore wind power, despite its higher cost compared to onshore wind farms, has come from a politically driven perception that onshore wind power is too intrusive in a country which is relatively densely populated and values its landscape, as well as a recognition that winds offshore are stronger and more constant.

A metric known as the “load factor” is used as a measure of how much a power plant produces on average (taking into account it is not at full output all the time) as a fraction of its maximum possible output. For onshore wind power this was 29.4% in 2015 and for offshore it was 33.3%. During a particularly windy December 2015, the London Array’s load factor was 78.9% which is a level closer to that expected from a nuclear power station.

These figures are testament to the higher and less variable winds that are seen offshore. As projects are built further from the coast, average wind speeds increase, along with the load factor.

The UK is also largely surrounded by shallow waters, which also works in its favour. For instance, Dogger Bank, site of another huge proposed windfarm, is more than 100km from the coast, yet the sea is less than 30m deep in much of the area (indeed “Doggerland” was above the waterline during the last ice age, and was home to thousands of humans). This leaves much of Britain’s offshore potential well within the reach of established and relatively cheap foundation designs such as piles driven into the sea bed.

Growing pains

How much offshore wind power could feasibly be installed in UK waters? The answer will be primarily driven by economics and constraints, which in turn depend on a number of physical and logistical factors.

As we move to deeper water sites, those cheaper foundations are no longer feasible. Indeed, beyond depths of 80m, floating foundations are required. This technology, though common in the oil and gas industry, is still at a prototype stage for offshore wind and will inevitably increase costs.


Specialist ships are needed to build offshore wind turbines. Nightman1965 / shutterstock

Greater distances from shore make both construction and maintenance more expensive, as boats have further to travel from the relatively few large ports available to service huge offshore wind farms. In addition, the relatively small number of specialist vessels required for these tasks limits the rate and scale of construction.

The UK has some of the busiest seas in the world both at the surface, criss-crossed by shipping lanes, and on the sea bed in the form of cables, pipelines, shipwrecks and unexploded ordnance. These factors to some extent restrict where offshore wind farms can be built. Beyond 80km or so from the coast, special high-voltage direct current (HVDC) grid connections are required to export the gigawatts of power that will be generated. Though this technology is relatively well established, it is currently more expensive than the more common alternating current (AC) cabling – and connecting multiple offshore wind farms to a common connection point offshore is challenging.

Environmental factors have to be considered too. A site may be off limits if it may have an impact on a particular bird species. For example, one of the reasons that the proposed site at Shell Flats, off the coast of Blackpool, was abandoned was because of its potential impact on the common scoter sea duck.

The number of turbines that can be installed in a given area is also limited by aerodynamics: if turbines are too close, those downstream have to work with reduced wind speeds and increased turbulence. The former reduces the power available and the latter increases fatigue and reduces turbine lifetime.

Taking all of these factors into account, a recent study of the UK’s offshore wind energy potential has suggested that the total amount of economically feasible installed capacity offshore might be up to 675GW. This could provide more than six times the UK’s present national electricity demand. Capacity is currently just 5GW so, in other words, the UK has still exploited less than 1% of its offshore wind potential. In the unlikely event that this amount of offshore wind power was built, it would make the UK a major exporter of renewable energy to continental Europe.

Where next for UK offshore wind power? The study which reached the 675GW figure assumed a levelised cost of energy (LCOE), which factors in construction and maintenance costs, of up to £120/MWh. By 2020, the government wants to get costs down to £100/MWh. A number of the developers in British waters are bullish about such reductions and by 2025, they expect costs of £70/MWh, well below the strike price of £92.50/MWh agreed for the Hinckley Point C nuclear power station which is not expected to come on stream until at least 2023.

However, there are challenges ahead. Even if operational improvements and more efficient designs do manage to keep costs down, there remains the question of how to integrate a variable form of power generation into the UK grid. This will be achieved by more advanced controlled strategies for offshore wind farms, greater network interconnectivity with European neighbours, smart and flexible demand-side management technology and ultimately cost-effective energy storage.

is Professor of Wind Energy at Loughborough University.

Reprinted with permission under a Creative Commons Attribution NoDerivatives license.

Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

EV Obsession Daily!

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
Thank you!

Tesla Sales in 2023, 2024, and 2030

CleanTechnica uses affiliate links. See our policy here.
Written By

We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people, organizations, agencies, and companies.


You May Also Like

Carbon Pricing

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News! In a recent speech, Prime Minister Rishi Sunak...

Electric Cars

The UK prime minister's decision to extend the country's ICE vehicle ban has sparked fierce opposition from a variety of constituents, including members of...

Clean Power

Octopus Energy has assembled an army of 20,000 communities clamoring for local wind turbines and cheap electricity.


Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News! August saw EVs take 27.8% of the UK...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.