Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Power

First Offshore Wind Farm In U.S. Under Construction

Originally published on EIA.

offshore-wind

Source: U.S. Energy Information Administration, based on Lindoe Offshore Renewables Center

In July, American offshore wind developer, Deepwater Wind, installed the first foundation for what is expected to be the first offshore wind farm in the United States. The project will be located three miles southeast of Block Island, Rhode Island.

With five turbines totaling 30 megawatts (MW) of generation capacity, the Block Island Wind Farm is expected to come online in 2016. Deepwater Wind, the developer, is also planning two larger offshore projects along the Atlantic Coast, but their timing remains uncertain.

The National Renewable Energy Laboratory (NREL) estimates that the United States has 4,200 gigawatts (GW) of developable offshore wind potential, compared to its estimate of 11,000 GW of onshore wind potential. Wind resources are classified on a scale of zero to seven based on their power density, and more than 66% of offshore wind in the United States is in wind power class six or seven. In addition, offshore wind turbines are built to take advantage of the more consistent wind speeds present over the ocean, allowing higher utilization rates for offshore generation capacity when compared with similarly sized onshore wind turbines. However, offshore wind is significantly more expensive to build and maintain than onshore wind.

Although there are currently no operating offshore wind projects in the United States, offshore wind turbine technology has grown steadily in Europe, and, to a lesser extent, in Asia. As of 2014, Europe accounted for 90% of the estimated 8.8 GW of installed global offshore wind turbine capacity. Offshore wind power development in Europe began in 1991 when the first offshore farm was installed off the coast of Denmark, although the industry had little growth from that point until the 2000s.

In the United States, developers have proposed building nearly 4.9 GW of offshore wind capacity off the coasts of nine different states, but some challenges remain even for projects that have advanced through key regulatory and market milestones. For example, Cape Wind, a 486-MW project proposed in 2001, faced significant challenges and litigation that halted its progress. In 2014, National Grid and Eversource Energy terminated the power purchase agreements with Cape Wind because of missed project development deadlines. This past March, Cape Wind canceled its lease in New Bedford, Massachusetts, for its planned project-staging area. Other projects such as the Virginia Offshore Wind Technology Advancement Project and Fisherman’s Energy Wind of New Jersey have faced development hurdles despite making significant progress in project development.

Compared with western Europe, the current leader in offshore wind energy, the United States is estimated to have more abundant and favorable onshore wind resources, which are largely located in areas with low population density. So far, the high cost of domestic offshore wind projects has made them economically unattractive, despite the availability of federal tax incentives and state policies to promote use of renewable energy. In contrast, onshore wind capacity has grown by more than a factor of 25 since 2000.

Building and maintaining offshore wind technology is expensive compared with onshore wind projects because of challenges such as transporting equipment and workers to the sites, securing turbines to the seafloor, and operating in fewer periods of fair weather. The harsher offshore environment not only makes it difficult and more costly to perform maintenance, but it also increases the frequency that these activities have to take place.

tab1

Principal contributors: Rachel Marsh, Cara Marcy

Reprinted with permission.

 
Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 

Don't want to miss a cleantech story? Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Advertisement
 
Written By

We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people, organizations, agencies, and companies.

Comments

#1 most loved electric vehicle, solar energy, and battery news & analysis site in the world.

 

Support our work today!

Power CleanTechnica: $3/Month

Tesla News Solar News EV News Data Reports

Advertisement

Advertisement

Advertisement

Tesla News

EV Reviews

Home Efficiency

You May Also Like

Clean Power

On July 11, U.S. Secretary of Energy Jennifer Granholm and Australia’s Minister for Climate Change and Energy Chris Bowen signed the Australia–United States Net-Zero...

Buildings

Heat pumps join climate fight with new high efficiency, cold-tolerant technology.

Clean Power

New technology for constructing taller wind turbines will open up the wind power floodgates in the US Southeast.

Clean Power

Green hydrogen is going down in cost, and concentrating solar power could pick up the pace by ditching electrolysis in favor of a thermochemical...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.