Connect with us

Hi, what are you looking for?

CleanTechnica

Cars

3 Alternative Electric Motor Designs For EVs Revealed At CWIEME Berlin

Originally published on CWIEME.

Dr.-Ing. Martin Doppelbauer, Professor for Hybrid Electric Vehicles at the Karlsruhe Institute of Technology (KIT), will use his seminar at CWIEME Berlin to reveal three alternative electric motor designs together with their test results.

Amid constant market demand for cleaner and more efficient vehicles, weight reduction remains a key driver of innovation in the automotive industry. Even in the manufacture of hybrid and electric vehicles – which are more environmental by nature – size and weight are still the name of the game.

“It’s all about power density,” says Dr. Doppelbauer, Professor for Hybrid Electric Vehicles at the Karlsruhe Institute of Technology (KIT). “If we can develop motors for electric cars with the same or higher power and torque at a smaller size and weight, then we can significantly reduce engine cost.”

Increasing electric motor power density through innovative design will be the focus of a public seminar by Dr. Doppelbauer in May at CWIEME Berlin – the world’s largest annual meeting place for the coil winding, insulation and electrical manufacturing communities. In particular, Dr. Doppelbauer will present three alternative examples from his work at KIT: an axial flux motor, an asymmetrical field winding synchronous motor and an optimized permanent magnet synchronous motor.

“While many vehicle and motor manufacturers are carrying out their own research on improving power density, it should be interesting for them to hear the direction that academia is taking – to compare our achievements to theirs and see what is possible,” Dr. Doppelbauer says.

Experimenting with unusual designs 

Researchers at KIT started investigating the potential of axial flux motors after ‘miraculous’ claims from a few small manufacturers. “There are only a few companies that produce this type of motor because of the special tools required, but their claims are so impressive, we wanted to develop our own to determine whether they were really true,” he says.

In contrast to the traditional ‘cylinder within a cylinder’ electric motor design, KIT’s axial flux motor consists of two rotating outer discs and a fixed inner disc. “The idea is that by increasing the surface area of the motor – and, therefore, the area that the magnetic field can penetrate – we also increase the force and torque of the motor,” he says.

KIT researchers are also investigating the possibility of an asymmetrical motor for use in electric vehicles. Electrical machines typically have balanced motor and generator functions, but Dr. Doppelbauer is hoping to improve motor operation by ‘stealing’ from the generator. “Ninety-nine percent of the time when driving a car you only need the motor operation. This has never been done before, but our calculations are very promising,” he says.

A future prototype is currently in the design phase. It is based on a field winding synchronous machine, similar to the Renault Zoe but with permanent magnets and a special design to make asymmetrical behavior possible. Dr. Doppelbauer looks forward to presenting the concept in May.

Dr. Doppelbauer will also present the optimized permanent magnet synchronous engines created by his students as part of Formula Student, a competition for academic teams from around the world to design, build and race small-scale formula-style cars. Last year the KIT electric team – which placed third, overall – achieved 50kW peak power and a speed of more than 100kph at a motor weight of 5kg. This year the team has designed a 40kW motor that weighs only 3.5kg. “I believe this is a world record, or at least very close,” he says.

At the forefront of electric vehicle technology 

Since 2011 Dr. Martin Doppelbauer has held the chair of Hybrid Electric Vehicles (HEV) at the Karlsruhe Institute of Technology (KIT) in Germany. In addition to lecturing, collaborating on many industry projects and carrying out his own research, Dr. Doppelbauer plays an active role in standardization of industrial motors and drives as part of DKE (the German Commission for Electrical, Electronic & Information Technologies of DIN and VDE); CENELEC (the European Committee for Electrotechnical Standardization); and IEC (the International Electrotechnical Commission). Dr. Doppelbauer is the chairman of the German national committee on electric machines (DKE K311). He holds a doctorate in the calculation of electric machines from the University of Dortmund and has worked in industry in the field of electric motors for more than 15 years.

Dr. Doppelbauer will be presenting his seminar, entitled ‘Keeping pace with the drive for emobility: Insights and findings for improved electric and hybrid vehicle and motor design,’ at the CWIEME Central auditorium on Tuesday 5th May, 12:00-12:40.

CWIEME Central seminars are held in English and free for all CWIEME Berlin visitors to attend.

Reprinted with permission.

 
 
 
Don't want to miss a cleantech story? Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Advertisement
 
Written By

We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people, organizations, agencies, and companies.

Comments

You May Also Like

Cars

The potential to achieve 100% sustainable-materials car tires is in sight, with an assist from mass balance supply chain bookkeeping.

Cars

ZF has produced two million electric motors, a significant milestone. The tech firm offers a variety of electric motors to automobile manufacturers, including hybrid...

Clean Transport

The shape of the longest railroad bridge in South Korea has inspired University of New South Wales engineers to design a new high-speed motor....

Clean Transport

The E-Core electric powertrain is a direct swap for the 50 cc engines in millions of scooters and mopeds in the world.

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.