Storing Light Energy As Mechanical Energy In Contractile Gel

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

A polymer gel that is able to contract when exposed to light — thereby storing mechanical energy through the actions of artificial molecular motors — has been developed by researchers at CNRS’s Institut Charles Sadron.

The effect is caused via the nanoscale motors, when exposed to light, twisting the polymer chains in the gel — thereby causing the material to contract somewhat.


Here’s a bit of background on the subject/mechanisms: in biological systems, molecular motors are very complex protein assemblies that can produce “work” via the consumption of energy. A great many things rely on them — everything from “movement,” to protein synthesis, to DNA copying. While individual molecular motors operate on the scale of nanometers (or less), when they coordinate together in collective actions numbering in the millions or billions, then macro-scale effects occur.

It’s, unsurprisingly, long been a goal of researchers in the field to produce similar motors — and motion of this type — artificially.

Here’s the technical information, via the study:

To achieve this, the researchers at Institut Charles Sadron replaced a gel’s reticulation points, which cross-link the polymer chains to each other, by rotating molecular motors made up of two parts that can turn relative to each other when provided with energy. For the first time, they succeeded in getting the motors to work in a coordinated and continuous manner, right up to the macroscale: as soon as the motors are activated by light they twist the polymer chains in the gel, which makes it contract.

Just as in living systems, the motors consume energy in order to produce continuous motion. However, this light energy is not totally dissipated: it is turned into mechanical energy through the twisting of the polymer chains, and stored in the gel. If the material is exposed to light for a long time, the amount of energy contained in the contraction of the polymer chains becomes very high, and can even trigger a sudden rupture of the gel. The researchers at Institut Charles Sadron are therefore now attempting to take advantage of this new way of storing light energy, and reuse it in a controlled manner.

It’s hard to say what exactly this technology can or will be used for as far as renewable energy goes, but it is interesting — something a bit different, and potentially useful in some ways, even if maybe only in niche applications.

The new research is detailed in a paper published in the journal Nature Nanotechnology.

Image Credit: Gad Fuks/Nicolas Giuseppone/Mathieu Lejeune

Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Latest CleanTechnica.TV Video

CleanTechnica uses affiliate links. See our policy here.

James Ayre

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

James Ayre has 4830 posts and counting. See all posts by James Ayre