#1 cleantech news, reviews, & analysis site in the world. Subscribe today. The future is now.

Batteries new lithium-ion battery discovery could improve EV range

Published on December 21st, 2014 | by Tina Casey


New Lithium-Ion Battery Discovery Contradicts Everything You Thought You Knew

December 21st, 2014 by  

Researchers over at Lawrence Berkeley National Laboratory have made a new lithium-ion battery discovery that could prove a little disconcerting to a lot of folks in the energy storage field. The finding comes out of a first-of-its-kind analysis using X-ray absorption spectroscopy, and apparently it contradicts “numerous” studies aimed at improving the efficiency of lithium-ion batteries.

The good news is, the new lithium-ion battery discovery could accelerate the development of next-generation EV batteries, so let’s see what all the buzz is about.

new lithium-ion battery discovery could improve EV range

Interpretation of x-ray absorption spectra analysis (courtesy of Berkeley Lab).

The New Lithium-Ion Battery Discovery

The new lithium-ion battery research focused on unlocking some of the mystery behind the nanoscale function of the liquid electrolyte in lithium-ion batteries. For those of you new to the battery topic,  the electrolyte is the stuff that enables an electrical charge to flow from the battery to whatever device you want to electrify, so yeah, the electrolyte is pretty important.

The electrolyte commonly used in lithium-ion batteries consists of a lithium salt dissolved in a solvent, typically based on an alkyl carbonate. Here’s the deal according to study co-author Richard SayKally of Berkeley Lab:

There’s disagreement in the battery industry on the nature of the local solvation environment of lithium ions in these solutions, a critical issue because the desolvation of the ions as they move through the negative electrode is believed to limit the electrical power that can be made available.

Until now, computer modeling has predicted that the solvation structure for the lithium ion is based mainly on tetrahedral coordination (a tetrahedron is a 3-D form made of four triangular faces) (and solvation is fancyspeak for the behavior of molecules in a solvent).


The Berkeley team found something quite different, and they used a quite different method to get there.

The team developed a new device that shoots a nanoscale “liquid beam” into a vacuum chamber, where it crosses an X-ray beam. To get the X-ray beam, they checked into beamline 8.0.1 of Berkeley Lab’s Advanced Light Source facility, which produces X-ray beams for X-ray spectroscopy.

That was the easy part, relatively speaking. The next step was to get hold of a supercomputer or two over at the National Energy Research Scientific Computing Center and decipher the results of the spectroscopy.

The team found that, in contrast to the solvation number of 2 or 3 characteristic of tetrahedral coordination, the lithium ion in the electrolyte had a solvation number of 4.5.

So, in order to develop more efficient electrolytes, foundational research into next-generation lithium-ion batteries needs to get over its focus on modeling based on tetrahedral coordination.

In other words, don’t hold your breath for a new super-efficient electrolyte to hit the commercial market any time soon, but the way forward is a lot more clear now.

What About Fuel Cells?

Okay, so much for the new lithium-ion battery discovery. If you’ve been checking out the horse race between Li-ion batteries and fuel cells for domination of the electric vehicle market, the new Berkeley discovery bumps things up a notch in favor of batteries.

That’s good news for Tesla and any other auto manufacturer that has committed exclusively to battery EV technology.

On the other hand, the Saykally Group at Berkeley Lab is also responsible for a discovery that could help blow the fuel cell market wide open, at least in terms of finding a more sustainable source for hydrogen fuel.

That study, published in 2007, used a “microjet” of fluid concept similar to the methodology deployed for the new lithium-ion battery study. The Saykally team found that you can generate hydrogen gas and an electrical current, too, by forcing a fluid through nanoscale conduits.

The last time we checked, the process was patented (#8372374 for those of you keeping score at home) and is available for further research or licensing.

Follow me on Twitter and Google+.

Tags: ,

About the Author

specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Tina’s articles are reposted frequently on Reuters, Scientific American, and many other sites. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.

  • Kevin McKinney

    Interesting article (and comments.) Just have to say, though, that “solvation numbers” and “tetrahedral coordination” were actually well outside the envelope of ‘what I thought I knew’ about Li tech…

  • Michael G

    Thanks for this. I had trouble figuring out the implications of this after reading the press release but if it points a way to increase voltage or current, as seems possible, it could be fantastic.

    It takes a long time to make it from the lab to the production line but with so much money on the line in batteries for laptops to EVs, maybe this will make a difference sooner rather than later.

    I am a little skeptical about anything revolutionary in the lab making a difference immediately since I have been waiting for PVs to get affordable since the 1970s and for most the intervening 40 years the word was always “real soon now”. Now it is finally happening – a long wait.

    When I was in grad school in physics, most of my fellow doctoral students were getting their thesis in Fusion research. It was the energy of the future. And it still is. Anyone complaining about some research area getting too much money needs to look at how many $Billions have been (and are being) poured into fusion research over the decades with not a lot to show for it.

    • Bob_Wallace

      Batteries are likely to progress much, much faster than did solar panels. There wasn’t an apparent market of any size for PV until Spain and Germany started to install in meaningful numbers. The interest in batteries is very high with many companies working rapidly to get a chunk of this new market.

  • Mark Benjamin David

    Clean or not, it takes multiple times more energy to produce hydrogen than to charge a battery, then add on top of that the special requirements for hydrogen…has to be highly pressurized, and handled properly, while gasoline is flammable, and only explodes in TV & movies (with the help of explosives on the cars), hydrogen will actually explode…and then it has to be transported, distributed, and people have to go to the gas…er I mean hydrogen station to get it. This is never accounted for by pro-hydrogen people. And, the general public is used to going to the gas station, so it seems to make sense to them, even though that is an inconvenience in reality, compared to BEVs.

    Hydrogen has many issues for the consumer market, it’s rocket fuel, and should stay that way.

  • Joseph Dubeau

    Very interesting method for generating clean hydrogen.

    “By hydrostatic pressure, the fluid is forced through conduits with diameters on the nanometer to micrometer scale. Negative charge carriers in the fluid adsorb to the internal surface of the conduits and protons are carried away in the microjet, creating a net positive current.” http://ipo.lbl.gov/lbnl2093/

  • Tina’s a national treasure. Probably the best science writer for us huddled masses out there. A little too PR’y sometimes for my taste, but she does distill complicated stuff down to its essence nicely. However…

    It may help technology development and commercialization fans, me included, to be constantly told where all this R&D sits in the grand scheme of things. Research, and especially basic research, goes on daily with new findings and refutations of old saws. Tina’s previous posts have plugged fuel cells unflinchingly. And this article almost caused me to sell my stocks in battery mother liquor (the original alchemist’s term for a solute) tetrahedrons. It may be best to start a blog post on the latest R&D findings with a disclaimer like, “this issue is at this point in the R&D process.” Which she kind of did, but backhandedly like, “holy smokes, there’s a problem with batteries, sort of. In other news, fuel cells are going swimmingly.”

Back to Top ↑